ebook img

Alternatives for Programming in Conjunction with an - ampl PDF

73 Pages·2014·2.6 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Alternatives for Programming in Conjunction with an - ampl

Alternatives for Programming in Conjunction with an Algebraic Modeling Language for Optimization Robert Fourer AMPL Optimization Inc. www.ampl.com — +1 773-336-AMPL OR 2014 Annual International Conference of the German Operations Research Society (GOR) Aachen, 2-5 September 2014 Session TA-21, Tuesday 8:15-9:45, Optimization Modeling II Robert Fourer, Alternatives for Programming in an Algebraic Modeling Language 1 OR2014 Aachen —2-5 September 2014 —TA-21 Optimization Modeling II Alternatives for Programming in Conjunction with an Algebraic Modeling Language for Optimization Modeling languages for formulating interpreted scripting languages, and and analyzing optimization prob- by exposure of their functions lems are essentially declarative, in through application programming that they are founded on a symbolic interfaces (APIs). How can scripting description of a model’s objective and APIs benefit the user of a function and constraints rather than declarative language, and what do a procedural specification of how a they offer in comparison to problem instance is to be generated modeling exclusively in a general- and solved. Yet successful optimi- purpose language? This presen- zation modeling languages have tation suggests a variety of answers, come to offer many of the same through examples that make use of facilities as procedural, high-level advanced AMPL scripting features programming languages, in two and the new AMPL APIs for Java, ways: by extension of their syntax to MATLAB, and other platforms. Robert Fourer, Alternatives for Programming in an Algebraic Modeling Language 2 OR2014 Aachen —2-5 September 2014 —TA-21 Optimization Modeling II Robert Fourer, Alternatives for Programming in an Algebraic Modeling Language 3 OR2014 Aachen —2-5 September 2014 —TA-21 Optimization Modeling II Robert Fourer, Alternatives for Programming in an Algebraic Modeling Language 4 OR2014 Aachen —2-5 September 2014 —TA-21 Optimization Modeling II Framework 3 ways to use a modeling language  Command language  Scripting language  Programming interface (API) Example: Multicommodity transportation  Solution via command language  Sensitivity analysis via scripting Example: Roll cutting  Pattern enumeration  via scripting / via API  Pattern generation  via scripting / via API Robert Fourer, Alternatives for Programming in an Algebraic Modeling Language 5 OR2014 Aachen —2-5 September 2014 —TA-21 Optimization Modeling II Command Language Multicommodity transportation . . .  Products available at factories  Products needed at stores  Plan shipments at lowest cost . . . with practical restrictions  Cost has fixed and variable parts  Shipments cannot be too small  Factories cannot serve too many stores Robert Fourer, Alternatives for Programming in an Algebraic Modeling Language 6 OR2014 Aachen —2-5 September 2014 —TA-21 Optimization Modeling II Multicommodity Transportation Given (cid:1841) Set of origins (factories) (cid:1830) Set of destinations (stores) (cid:1842) Set of products and (cid:1853) Amount available, for each (cid:1861) ∈ (cid:1841) and (cid:1868) ∈ (cid:1842) (cid:3036)(cid:3043) (cid:1854) Amount required, for each (cid:1862) ∈ (cid:1830) and (cid:1868) ∈ (cid:1842) (cid:3037)(cid:3043) (cid:1864) Limit on total shipments, for each (cid:1861) ∈ (cid:1841) and (cid:1862) ∈ (cid:1830) (cid:1861)(cid:1862) (cid:1855) Shipping cost per unit, for each (cid:1861) ∈ (cid:1841), (cid:1862) ∈ (cid:1830), (cid:1868) ∈ (cid:1842) (cid:1861)(cid:1862)(cid:1868) (cid:1856) Fixed cost for shipping any amount from (cid:1861) ∈ (cid:1841) to (cid:1862) ∈ (cid:1830) (cid:1861)(cid:1862) (cid:1871) Minimum total size of any shipment (cid:1866) Maximum number of destinations served by any origin Robert Fourer, Alternatives for Programming in an Algebraic Modeling Language 7 OR2014 Aachen —2-5 September 2014 —TA-21 Optimization Modeling II Multicommodity Transportation Mathematical Formulation Determine (cid:1850) Amount of each (cid:1868) ∈ (cid:1842) to be shipped from (cid:1861) ∈ (cid:1841) to (cid:1862) ∈ (cid:1830) (cid:1861)(cid:1862)(cid:1868) (cid:1851) 1 if any product is shipped from (cid:1861) ∈ (cid:1841) to (cid:1862) ∈ (cid:1830) (cid:1861)(cid:1862) 0 otherwise to minimize ∑ ∑ ∑ (cid:1855) (cid:1850) (cid:3397) ∑ ∑ (cid:1856) (cid:1851) (cid:3036)∈(cid:3016) (cid:3037)∈(cid:3005) (cid:3043)∈(cid:3017) (cid:3036)(cid:3037)(cid:3043) (cid:3036)(cid:3037)(cid:3043) (cid:3036)∈(cid:3016) (cid:3037)∈(cid:3005) (cid:3036)(cid:3037) (cid:3036)(cid:3037) Total variable cost plus total fixed cost Robert Fourer, Alternatives for Programming in an Algebraic Modeling Language 8 OR2014 Aachen —2-5 September 2014 —TA-21 Optimization Modeling II Multicommodity Transportation Mathematical Formulation Subject to ∑ (cid:1850) (cid:3409) (cid:1853) for all (cid:1861) ∈ (cid:1841), (cid:1868) ∈ (cid:1842) (cid:3037)∈(cid:3005) (cid:3036)(cid:3037)(cid:3043) (cid:3036)(cid:3043) Total shipments of product (cid:1868) out of origin (cid:1861) must not exceed availability ∑ (cid:1850) (cid:3404) (cid:1854) for all (cid:1862) ∈ (cid:1830), (cid:1868) ∈ (cid:1842) (cid:3036)∈(cid:3016) (cid:3036)(cid:3037)(cid:3043) (cid:3037)(cid:3043) Total shipments of product (cid:1868) into destination (cid:1862) must satisfy requirements Robert Fourer, Alternatives for Programming in an Algebraic Modeling Language 9 OR2014 Aachen —2-5 September 2014 —TA-21 Optimization Modeling II Multicommodity Transportation Mathematical Formulation Subject to ∑ (cid:1850) (cid:3409) (cid:1864) (cid:1851) for all (cid:1861) ∈ (cid:1841), (cid:1862) ∈ (cid:1830) (cid:3043)∈(cid:3017) (cid:3036)(cid:3037)(cid:3043) (cid:3036)(cid:3037) (cid:3036)(cid:3037) When there are shipments from origin (cid:1861) to destination (cid:1862), the total may not exceed the limit, and (cid:1851) must be 1 (cid:3036)(cid:3037) ∑ (cid:1850) (cid:3410) (cid:1871)(cid:1851) for all (cid:1861) ∈ (cid:1841), (cid:1862) ∈ (cid:1830) (cid:3043)∈(cid:3017) (cid:3036)(cid:3037)(cid:3043) (cid:3036)(cid:3037) When there are shipments from origin (cid:1861) to destination (cid:1862), the total amount of shipments must be at least (cid:1871) ∑ (cid:1851) (cid:3409) (cid:1866) for all (cid:1861) ∈ (cid:1841) (cid:3037)∈(cid:3005) (cid:3036)(cid:3037) Number of destinations served by origin (cid:1861) must be as most (cid:1866) Robert Fourer, Alternatives for Programming in an Algebraic Modeling Language 10 OR2014 Aachen —2-5 September 2014 —TA-21 Optimization Modeling II

Description:
Sep 5, 2014 2. Alternatives for Programming in Conjunction with an Algebraic Modeling Language for Optimization. Modeling languages for formulating.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.