Alternatives for Programming in Conjunction with an Algebraic Modeling Language for Optimization Robert Fourer AMPL Optimization Inc. www.ampl.com — +1 773-336-AMPL OR 2014 Annual International Conference of the German Operations Research Society (GOR) Aachen, 2-5 September 2014 Session TA-21, Tuesday 8:15-9:45, Optimization Modeling II Robert Fourer, Alternatives for Programming in an Algebraic Modeling Language 1 OR2014 Aachen —2-5 September 2014 —TA-21 Optimization Modeling II Alternatives for Programming in Conjunction with an Algebraic Modeling Language for Optimization Modeling languages for formulating interpreted scripting languages, and and analyzing optimization prob- by exposure of their functions lems are essentially declarative, in through application programming that they are founded on a symbolic interfaces (APIs). How can scripting description of a model’s objective and APIs benefit the user of a function and constraints rather than declarative language, and what do a procedural specification of how a they offer in comparison to problem instance is to be generated modeling exclusively in a general- and solved. Yet successful optimi- purpose language? This presen- zation modeling languages have tation suggests a variety of answers, come to offer many of the same through examples that make use of facilities as procedural, high-level advanced AMPL scripting features programming languages, in two and the new AMPL APIs for Java, ways: by extension of their syntax to MATLAB, and other platforms. Robert Fourer, Alternatives for Programming in an Algebraic Modeling Language 2 OR2014 Aachen —2-5 September 2014 —TA-21 Optimization Modeling II Robert Fourer, Alternatives for Programming in an Algebraic Modeling Language 3 OR2014 Aachen —2-5 September 2014 —TA-21 Optimization Modeling II Robert Fourer, Alternatives for Programming in an Algebraic Modeling Language 4 OR2014 Aachen —2-5 September 2014 —TA-21 Optimization Modeling II Framework 3 ways to use a modeling language Command language Scripting language Programming interface (API) Example: Multicommodity transportation Solution via command language Sensitivity analysis via scripting Example: Roll cutting Pattern enumeration via scripting / via API Pattern generation via scripting / via API Robert Fourer, Alternatives for Programming in an Algebraic Modeling Language 5 OR2014 Aachen —2-5 September 2014 —TA-21 Optimization Modeling II Command Language Multicommodity transportation . . . Products available at factories Products needed at stores Plan shipments at lowest cost . . . with practical restrictions Cost has fixed and variable parts Shipments cannot be too small Factories cannot serve too many stores Robert Fourer, Alternatives for Programming in an Algebraic Modeling Language 6 OR2014 Aachen —2-5 September 2014 —TA-21 Optimization Modeling II Multicommodity Transportation Given (cid:1841) Set of origins (factories) (cid:1830) Set of destinations (stores) (cid:1842) Set of products and (cid:1853) Amount available, for each (cid:1861) ∈ (cid:1841) and (cid:1868) ∈ (cid:1842) (cid:3036)(cid:3043) (cid:1854) Amount required, for each (cid:1862) ∈ (cid:1830) and (cid:1868) ∈ (cid:1842) (cid:3037)(cid:3043) (cid:1864) Limit on total shipments, for each (cid:1861) ∈ (cid:1841) and (cid:1862) ∈ (cid:1830) (cid:1861)(cid:1862) (cid:1855) Shipping cost per unit, for each (cid:1861) ∈ (cid:1841), (cid:1862) ∈ (cid:1830), (cid:1868) ∈ (cid:1842) (cid:1861)(cid:1862)(cid:1868) (cid:1856) Fixed cost for shipping any amount from (cid:1861) ∈ (cid:1841) to (cid:1862) ∈ (cid:1830) (cid:1861)(cid:1862) (cid:1871) Minimum total size of any shipment (cid:1866) Maximum number of destinations served by any origin Robert Fourer, Alternatives for Programming in an Algebraic Modeling Language 7 OR2014 Aachen —2-5 September 2014 —TA-21 Optimization Modeling II Multicommodity Transportation Mathematical Formulation Determine (cid:1850) Amount of each (cid:1868) ∈ (cid:1842) to be shipped from (cid:1861) ∈ (cid:1841) to (cid:1862) ∈ (cid:1830) (cid:1861)(cid:1862)(cid:1868) (cid:1851) 1 if any product is shipped from (cid:1861) ∈ (cid:1841) to (cid:1862) ∈ (cid:1830) (cid:1861)(cid:1862) 0 otherwise to minimize ∑ ∑ ∑ (cid:1855) (cid:1850) (cid:3397) ∑ ∑ (cid:1856) (cid:1851) (cid:3036)∈(cid:3016) (cid:3037)∈(cid:3005) (cid:3043)∈(cid:3017) (cid:3036)(cid:3037)(cid:3043) (cid:3036)(cid:3037)(cid:3043) (cid:3036)∈(cid:3016) (cid:3037)∈(cid:3005) (cid:3036)(cid:3037) (cid:3036)(cid:3037) Total variable cost plus total fixed cost Robert Fourer, Alternatives for Programming in an Algebraic Modeling Language 8 OR2014 Aachen —2-5 September 2014 —TA-21 Optimization Modeling II Multicommodity Transportation Mathematical Formulation Subject to ∑ (cid:1850) (cid:3409) (cid:1853) for all (cid:1861) ∈ (cid:1841), (cid:1868) ∈ (cid:1842) (cid:3037)∈(cid:3005) (cid:3036)(cid:3037)(cid:3043) (cid:3036)(cid:3043) Total shipments of product (cid:1868) out of origin (cid:1861) must not exceed availability ∑ (cid:1850) (cid:3404) (cid:1854) for all (cid:1862) ∈ (cid:1830), (cid:1868) ∈ (cid:1842) (cid:3036)∈(cid:3016) (cid:3036)(cid:3037)(cid:3043) (cid:3037)(cid:3043) Total shipments of product (cid:1868) into destination (cid:1862) must satisfy requirements Robert Fourer, Alternatives for Programming in an Algebraic Modeling Language 9 OR2014 Aachen —2-5 September 2014 —TA-21 Optimization Modeling II Multicommodity Transportation Mathematical Formulation Subject to ∑ (cid:1850) (cid:3409) (cid:1864) (cid:1851) for all (cid:1861) ∈ (cid:1841), (cid:1862) ∈ (cid:1830) (cid:3043)∈(cid:3017) (cid:3036)(cid:3037)(cid:3043) (cid:3036)(cid:3037) (cid:3036)(cid:3037) When there are shipments from origin (cid:1861) to destination (cid:1862), the total may not exceed the limit, and (cid:1851) must be 1 (cid:3036)(cid:3037) ∑ (cid:1850) (cid:3410) (cid:1871)(cid:1851) for all (cid:1861) ∈ (cid:1841), (cid:1862) ∈ (cid:1830) (cid:3043)∈(cid:3017) (cid:3036)(cid:3037)(cid:3043) (cid:3036)(cid:3037) When there are shipments from origin (cid:1861) to destination (cid:1862), the total amount of shipments must be at least (cid:1871) ∑ (cid:1851) (cid:3409) (cid:1866) for all (cid:1861) ∈ (cid:1841) (cid:3037)∈(cid:3005) (cid:3036)(cid:3037) Number of destinations served by origin (cid:1861) must be as most (cid:1866) Robert Fourer, Alternatives for Programming in an Algebraic Modeling Language 10 OR2014 Aachen —2-5 September 2014 —TA-21 Optimization Modeling II
Description: