ebook img

All Sides to an Oval. Properties, Parameters, and Borromini’s Mysterious Construction PDF

161 Pages·2017·6.837 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview All Sides to an Oval. Properties, Parameters, and Borromini’s Mysterious Construction

Angelo Alessandro Mazzotti All Sides to an Oval Properties, Parameters, and Borromini’s Mysterious Construction AngeloAlessandroMazzotti IstitutodiIstruzioneSuperiore “I.T.C.DiVittorio–I.T.I.Lattanzio” Roma,Italy ISBN978-3-319-39374-2 ISBN978-3-319-39375-9 (eBook) DOI10.1007/978-3-319-39375-9 LibraryofCongressControlNumber:2017933470 #SpringerInternationalPublishingAG2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained hereinor for anyerrors oromissionsthat may havebeenmade. Thepublisher remainsneutralwith regardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Contents 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 PropertiesofaPolycentricOval. . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Four-CentreOvals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3 Ruler/CompassConstructionsofSimpleOvals. . . . . . . . . . . . . . . . 19 3.1 OvalswithGivenSymmetryAxisLines. . . . . . . . . . . . . . . . . . 20 3.2 OvalswithUnknownAxisLines. . . . . . . . . . . . . . . . . . . . . . . . 39 3.3 InscribingandCircumscribingOvals:TheFrameProblem. . . . . 49 3.4 TheStadiumProblemandtheRunningTrack. . . . . . . . . . . . . . 56 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4 ParameterFormulasforSimpleOvalsandApplications. . . . . . . . 61 4.1 ParameterFormulasforSimpleOvals. . . . . . . . . . . . . . . . . . . . 61 4.2 LimitationsfortheFrameProblem. . . . . . . . . . . . . . . . . . . . . . 80 4.3 MeasuringaFour-CentreOval. . . . . . . . . . . . . . . . . . . . . . . . . 85 4.4 ConcentricOvals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5 OptimisationProblemsforOvals. . . . . . . . . . . . . . . . . . . . . . . . . . 93 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6 RemarkableFour-CentreOvalShapes. . . . . . . . . . . . . . . . . . . . . . 101 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 7 Borromini’sOvalsintheDomeofSanCarloalleQuattroFontane inRome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 7.1 The1998Survey. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 7.2 TheProjectfortheDome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 7.2.1 TheDimensionsoftheDome.. . . . . . . . . . . .. . . . . . . . 124 7.2.2 TheImpostOvalandtheLanternOval. . . . . . . . . . . . . . 127 ix x Contents 7.2.3 DeterminingtheHeightoftheRingsofCoffers. . . . . . . 131 7.2.4 TheOvalsoftheRingsofCoffers. . . . . . . . . . . . . . . . . 136 7.3 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 8 Ovalswith4nCentresandtheGroundPlanoftheColosseum. . . . 145 8.1 TheConstructionofOvalswith4nCentres. . . . . . . . . . . . . . . . 145 8.2 TheOvalsintheGroundPlanoftheColosseum. . . . . . . . . . . . 148 8.2.1 ReferencesandDataUsed:TheTwo-StepMethod. . . . . 148 8.2.2 TheFour-CentreOvalGuideline. . . . . . . . . . . . . . . . . . 149 8.2.3 FromaFour-CentretoanEight-CentreOval. . . . . . . . . 152 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 Appendix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 1 Introduction Whenwritingaboutovalsthefirstthingtodoistomakesurethatthereaderknows what you are talking about. The word oval has, both in common and in technical language,anambiguousmeaning.Itmaybeanyshaperesemblingacirclestretched fromtwooppositesides,sometimesevenmoretoonesidethantotheother.Whenit comes to mathematics you have to be precise if you don’t want to talk about ellipses,oraboutnon-convexshapes,oraboutformswithasinglesymmetryaxis. Polycentric ovals are convex, with two symmetry axes, and are made of arcs of circle connected in a way that allows for a common tangent at every connection point.Thisformdoesn’thaveanelegantequationasdotheellipse,Cassini’sOval, orCartesianOvals.Butithasbeenusedprobablymorethananyothersimilarshape tobuildarches,bridges,amphitheatres,churchesandwindowswheneverthecircle was considered not convenient or simply uninteresting. The ellipse is nature, it is howtheplanetsmove,whiletheovalishuman,itisimperfect.Ithasoftenbeenan artist’sattempttoapproximatetheellipse,tocomeclosetoperfection.Buttheoval allowsforfreedom,becausechoicesofpropertiesandshapestoinscribeorcircum- scribe can be made by the creator. The fusion between the predictiveness of the circle and the arbitrariness of how and when this changes into another circle is described in the biography of the violin-maker Martin Schleske: “Ovals describe neither a mathematical function (as the ellipse does) nor an arbitrary shape. [...] Two elements mesh here in a fantastic dialectic: familiarity and surprise. They formaharmoniccontrast.[...]Inthisshapetheonecannotexistwithouttheother.” (ourtranslationfromtheGerman,[15],pp.47–48). Polycentric ovals are and have been used by architects, painters, craftsmen, engineers,graphicdesignersandmanyotherartistsandspecialists,buttheknowl- edgeneededtodrawthedesiredshapehasbeen—mostlyinthepast—eitherspread bywordofmouthorfoundoutbymethodsoftrialanderror.Thequestionofwhat wasknownaboutovalsinancienttimeshasregainedinterestinthelast20years.In [4] the idea of a missing chapter about amphitheatres in Vitruvius treatise De Architectura Libri Decem is put forward by Duvernoy and Rosin, while in [7] Lo´pezMozoarguesthatatthetimetheEscorialwasbuilttheknow-howhadtobe #SpringerInternationalPublishingAG2017 1 A.A.Mazzotti,AllSidestoanOval,DOI10.1007/978-3-319-39375-9_1 2 1 Introduction better than whatappears lookingat the sourcesavailable today. In[6]the authors showhowtheovalshapehasbeenusedinthedesignofSpanishmilitarydefense, while in [8] the author suggests that methods of drawing ovals with any given proportion were within reach, if not known, at the time Francesco Borromini planned the dome for S.Carlo alle Quattro Fontane, since they only required a basic knowledge of Euclidean geometry (the whole of Chap. 7 of this book is dedicatedtothisconstruction).Inanycase,tracesofpolycentriccurvesdateback thousands of years (see for example Huerta’s extensive work on oval domes [5]). For everything that has come down to us in terms of treatises on the generic oval shape(laformaovataasshecallsit),withconstructionsexplainedbythearchitects intheirownwords,thebookbyZerlenga[17]isamust. Theideaofthisbookisnottodisputewhetherandwhenpolycentricovalswere usedinthepast.Itistocreateacompactandstructuredsetofdata,bothgeometric andalgebraic,coveringthesingletopicofpolycentricovalsinallitsmathematical aspects,andthentoillustratetwoveryimportantcasestudies.Basicconstructions andequationshavebeenusedand/orderivedbythosewhoneededthem,butsucha collectionhas—tothebestofourknowledge—neverbeenputtogether.Andthisis why this book can help those using the oval shape to make objects and to design buildings,aswellasthoseusingitasameansoftheirartisticcreation,tomasterand optimise the shape to fit their technical and/or artistic requirements. The author wentdeepintothesubjectandthebookcontainsmanyofhiscontributions,someof whichapparentlynotinvestigatedbefore. The style chosen is that of mathematical rigour combined with easy-to-follow passages, and this could only have been done because basic Euclidean geometry, analyticgeometry,trigonometryandcalculushavebeenused.Non-mathematicians whocanbenefitfromtheconstructionsand/orformulasondisplaywillthusbeable, with a bit of work, to understand where these constructions and formulas comefrom. Themainpublishedcontributionstothisworkhavebeen:theauthor’spaperon theconstructionofovals[8],Rosin’spapersonfamousovalconstructions[11,13], and onthe comparison ofan ellipse with an oval [11–14],Dotto’ssurvey on oval constructions[2]andhisbookonHarmonicOvals[3],Lo´pezMozo’spaperonthe variousgeneralpurposeconstructionsofpolycentricovalsinhistory[7],Ragazzo’s works on ovals and polycentric curves [9, 10]—which triggered the author’s interestinboththesubjects—andfinallythemonographontheColosseum[1]. TotallynewtopicsdisplayedinthismonographareConstructions10and11,the organisedcollectionofformulasinChap.4,theinscriptionandcircumscriptionof rectangles and rhombi with ovals, the Frame Problems and the constructions of ovalsminimisingtheratioandthedifferenceoftheradiiforanychoiceofaxes.An organizedapproachtotheproblemofnestedovalsisalsopresented,whattheauthor calls the Stadium Problem, as well as a new oval form by the author. The main contribution is though the study on Borromini’s dome in the church of San Carlo alle Quattro Fontane in Rome: together with Margherita Caputo a whole new hypothesis on the steps which Borromini took in his mysterious project for his complicatedovaldomeisputforward. References 3 Chapter 2 is dedicated to the basic properties of four-centre ovals and to their proofs. Chapter 3 lists a whole set of ruler/compass constructions systematically ordered. They are divided into: constructions where the axis lines are given, constructions where the oval has an undefined position on the plane but some parameters are given, special constructions involving inscribed or circumscribed rectangles and rhombi—including the direct and inverse Frame Problem—and finallyanillustrationofpossiblesolutionstotheStadiumProblem. In Chap. 4 we prove the formulas corresponding to the constructions of ovals withgivenaxislinespresentedinChap.3.Thenwederivetheformulassolvingthe directandinverseFrameProblems.Finallywederiveformulasfortheareaandthe perimeterofanoval. Chapter5featurestwonewoptimisationproblemsregardingthedifferenceand the ratio between the two radii of an oval with fixed axes and the corresponding constructions. Chapter6presentsfamousovalshapesandtheircharacteristicsasdeducedfrom theformulasofChap.4,withafinalcomparisonillustration. Chapter 7—co-written with Margherita Caputo—is about reconstructing the project for the dome of San Carlo alle Quattro Fontane as Borromini developed it.Wesuggestthathemodifiedanidealovaldomeusingadeformationmoduleto adaptittothespacehehadandtohisideaonwhatthevisitorshouldperceive,in termsofpatterns,lightanddepth. Chapter 8 illustrates a possible use of 8-centre ovals in the project for the Colosseum—as suggested by Trevisan in [16]—after a short introduction on the propertiesofovalswithmorethanfourcentres. The use of freeware Geogebra by which all the figures in this book were produced,has proveditselfcrucialin the representation, inthe understanding and inthediscoveryofpossibleproperties. References 1.AA.VV:IlColosseo.Studiericerche(DisegnareideeimmaginiX(18-19)).Gangemi,Roma (1999) 2.Dotto, E.: Note sulle costruzioni degli ovali a quattro centri. Vecchie e nuove costruzioni dell’ovale.DisegnareIdeeImmagini.XII(23),7–14(2001) 3.Dotto,E.:IlDisegnoDegliOvaliArmonici.LeNoveMuse,Catania(2002) 4.Duvernoy, S., Rosin, P.L.: The compass, the ruler and the computer. In: Duvernoy, S., Pedemonte, O. (eds.) Nexus VI—Architecture and Mathematics, pp. 21–34. Kim Williams Books,Torino(2006) 5.Huerta,S.:Ovaldomes,geometryandmechanics.NexusNetw.J.9(2),211–248(2007) 6.Lluis i Ginovart, J., Toldra` Domingo, J.M., Fortuny Anguera, G., Costa Jover, A., de Sola MoralesSerra,P.:TheellipseandtheovalinthedesignofSpanishmilitarydefenseinthe eighteenthcentury.NexusNetw.J.16(3),587–612(2014) 7.Lo´pezMozo,A.:Ovalforanygivenproportioninarchitecture:alayoutpossiblyknowninthe sixteenthcentury.NexusNetw.J.13(3),569–597(2011) 4 1 Introduction 8.Mazzotti, A.A.: What Borromini might have known about ovals. Ruler and compass constructions.NexusNetw.J.16(2),389–415(2014) 9.Ragazzo,F.:Geometriadellefigureovoidali.Disegnareideeimmagini.VI(11),17–24(1995) 10.Ragazzo, F.: Curve Policentriche. Sistemi di raccordo tra archi e rette. Prospettive, Roma (2011) 11.Rosin,P.L.:Asurveyandcomparisonoftraditionalpiecewisecircularapproximationstothe ellipse.Comput.AidedGeom.Des.16(4),269–286(1999) 12.Rosin, P.L.: A family of constructions of approximate ellipses. Int. J. Shape Model. 8(2), 193–199(1999) 13.Rosin,P.L.:OnSerlio’sconstructionsofovals.Math.Intell.23(1),58–69(2001) 14.Rosin,P.L.,Pitteway,M.L.V.:theellipseandthefive-centredarch.Math.Gaz.85(502),13–24 (2001) 15.Schleske,M.:DerKlang:Vomunerh€ortenSinndesLebens.K€osel,München(2010) 16.Trevisan, C.: Sullo schema geometrico costruttivo degli anfiteatri romani: gli esempi del Colosseoedell’arenadiVerona.DisegnareIdeeImmagini.X(18-19),117–132(2000) 17.Zerlenga,O.:La“formaovata”inarchitettura.Rappresentazione geometrica.Cuen,Napoli (1997) 2 Properties of a Polycentric Oval Inthischapterwesumupthewell-knownpropertiesofanovalandaddnewones,in ordertohavethetoolsforthevariousconstructionsillustratedinChap.3andforthe formulas linking the different parameters, derived in Chap. 4. All properties are derived by means of mathematical proofs based on elementary geometry and illustratedwithdrawings. Westartwiththedefinitionofwhatwemeaninthisbookbyoval: Apolycentricovalisaclosedconvexcurvewithtwoorthogonalsymmetryaxes(orsimply axes) made of arcs of circle subsequently smoothly connected, i.e. sharing a common tangent. Theconstructionofapolycentricovalisstraightforward.Ononeoftwoorthog- onal lines meeting at a point O, choose point A and point C between O and 1 A (Fig. 2.1). Draw an arc of circle through A with centre C , anticlockwise, up to 1 a point H such that the line C H forms an acute angle with OA. Choose then a 1 1 1 pointC onlineH C ,betweenC andthevertical axis,anddrawanewarcwith 2 1 1 1 centreC andradiusC H ,uptoapointH suchthatthelineC H formsanacute 2 2 1 2 2 2 angle with OA. Proceed in the same way eventually choosing a centre on the vertical axis—say C . The next arc will have as endpoint, say H , the symmetric 4 4 tothepreviousendpointw.r.t.theverticalline,sayH ,andcentreC .Fromnowon 3 4 symmetricarchesw.r.t.thetwoaxescanbeeasilydrawnusingsymmetriccentres. Theresultisa12-centreoval.Thiswayofproceedingallowsforcommontangents attheconnectingpointsH .Thenumberofcentresinvolvedisalwaysamultipleof n four, which means that the simplest ovals have four centres, and to these most of thisbookisdedicated,consideringthatformulasandconstructionsofthelattercan alreadybequitecomplicated.Itisalsotruethateight-centreovalshavebeenused byarchitectsinsomecasesinordertoreproduceaformascloseaspossibletothat ofanellipse.Chapter8isdevotedtothoseshapesandtothepossibilityofextending propertiesoffour-centreovalstothem. #SpringerInternationalPublishingAG2017 5 A.A.Mazzotti,AllSidestoanOval,DOI10.1007/978-3-319-39375-9_2 6 2 PropertiesofaPolycentricOval Fig.2.1 Constructinga12-centreoval Theabovedefinitionimpliesthatthisisapolycentriccurve,inthesensethatitis made of arcs of circle subsequently connected at a point where they share a common tangent (and this may include smooth or non-smooth connections). In [2]awayofformingpolycentriccurvesusingamoregeneralversionofaproperty ofovalsispresented. One of the basic tools by which ovals can be constructed and studied is the ConnectionLocus.Thisisasetofpointswheretheconnectionpointsfortwoarcs can be found. It was conjectured by Felice Ragazzo (see [4, 5]) for ovals, egg-shapes and generic polycentric curves. A Euclidean proof of its existence was the main topic in [2], along with constructions of polycentric curves making useofit.Inthisbooktheversionforfour-centreovalsisdisplayed,alongwithall theimplications,themainonebeingthattheovalisacurvedefinedbyatleastthree independentparameters,evenwhenafour-centreovalischosen. Tomakethisclearerletusconsideranellipsewithhalf-axesaandb.Thesetwo positive numbers are what is needed to describe the ellipse, whose equation in a

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.