ebook img

Algoritmos e inducción PDF

110 Pages·2012·1.04 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Algoritmos e inducción

Algoritmos e inducci´on Luis Sierra InstitutodeComputaci´on FacultaddeIngenier´ıa UniversidaddelaRepu´blica Febrero del 2012 Pr´acticas compartidas para la ensen˜anza de inform´atica: el aula y el trabajo Universidad Nacional de Quilmes, Argentina LuisSierra (InCo-Uruguay) Algoritmoseinduccio´n Quilmes2012 1/40 Outline 1 Inducci´on como justificaci´on 2 Inducci´on como descubrimiento 3 Sumar 4 Tipos de datos 5 Programaci´on 6 Visualizaci´on 7 Conclusiones LuisSierra (InCo-Uruguay) Algoritmoseinduccio´n Quilmes2012 2/40 Inducci´oncomojustificaci´on n n+1 LuisSierra (InCo-Uruguay) Algoritmoseinduccio´n Quilmes2012 3/40 Inducci´oncomojustificaci´on Gauss n (cid:88) n(n+1) i = 2 i=0 LuisSierra (InCo-Uruguay) Algoritmoseinduccio´n Quilmes2012 4/40 We verify that the formula holds true for the smallest possible value If we know that the formula holds true for the numbers < N, then it also holds true for the number N. From that we conclude that the formula holds true for all the numbers. Inducci´oncomojustificaci´on Induccio´n como justificaci´on n (cid:88) n(n+1) i = 2 i=0 Proof by Mathematical Induction follows this pattern: We want to verify that a formula, algebraic expression, holds true for all the values of the parameter, a whole number. LuisSierra (InCo-Uruguay) Algoritmoseinduccio´n Quilmes2012 5/40 If we know that the formula holds true for the numbers < N, then it also holds true for the number N. From that we conclude that the formula holds true for all the numbers. Inducci´oncomojustificaci´on Induccio´n como justificaci´on n (cid:88) n(n+1) i = 2 i=0 Proof by Mathematical Induction follows this pattern: We want to verify that a formula, algebraic expression, holds true for all the values of the parameter, a whole number. We verify that the formula holds true for the smallest possible value LuisSierra (InCo-Uruguay) Algoritmoseinduccio´n Quilmes2012 5/40 From that we conclude that the formula holds true for all the numbers. Inducci´oncomojustificaci´on Induccio´n como justificaci´on n (cid:88) n(n+1) i = 2 i=0 Proof by Mathematical Induction follows this pattern: We want to verify that a formula, algebraic expression, holds true for all the values of the parameter, a whole number. We verify that the formula holds true for the smallest possible value If we know that the formula holds true for the numbers < N, then it also holds true for the number N. LuisSierra (InCo-Uruguay) Algoritmoseinduccio´n Quilmes2012 5/40 Inducci´oncomojustificaci´on Induccio´n como justificaci´on n (cid:88) n(n+1) i = 2 i=0 Proof by Mathematical Induction follows this pattern: We want to verify that a formula, algebraic expression, holds true for all the values of the parameter, a whole number. We verify that the formula holds true for the smallest possible value If we know that the formula holds true for the numbers < N, then it also holds true for the number N. From that we conclude that the formula holds true for all the numbers. LuisSierra (InCo-Uruguay) Algoritmoseinduccio´n Quilmes2012 5/40 (cid:80)n+1i = (n+1)(n+2) i=0 2 ⇐= (cid:80)0 = 0(0+1) i=0 2 n+1+(cid:80)n i = (n+1)(n+2) ⇐= i=0 2 ⇐= (*) 0 = 0. n(n+1) (n+1)(n+2) n+1+ = 2 2 ⇐= 2(n+1)+n(n+1) = (n+1)(n+2). Inducci´oncomojustificaci´on Induccio´n como justificaci´on (∀n∈N::P.n) n (cid:88) n(n+1) P.n := i = 2 i=0 Paso: (∀n ∈ N : P.n : P.(n+1)) Base: P.0 LuisSierra (InCo-Uruguay) Algoritmoseinduccio´n Quilmes2012 6/40 (cid:80)n+1i = (n+1)(n+2) i=0 2 ⇐= n+1+(cid:80)n i = (n+1)(n+2) i=0 2 ⇐= (*) n(n+1) (n+1)(n+2) n+1+ = 2 2 ⇐= 2(n+1)+n(n+1) = (n+1)(n+2). Inducci´oncomojustificaci´on Induccio´n como justificaci´on (∀n∈N::P.n) n (cid:88) n(n+1) P.n := i = 2 i=0 Paso: (∀n ∈ N : P.n : P.(n+1)) Base: P.0 (cid:80)0 = 0(0+1) i=0 2 ⇐= 0 = 0. LuisSierra (InCo-Uruguay) Algoritmoseinduccio´n Quilmes2012 6/40

Description:
Proof by Mathematical Induction follows this pattern: We want to verify that a formula, algebraic expression, holds true for all the values of the.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.