Algorithms for computational argumentation in artificial intelligence Vasiliki Efstathiou Adissertationsubmittedinpartialfulfillment oftherequirementsforthedegreeof DoctorofPhilosophy of UCL. DepartmentofComputerScience UniversityCollegeLondon 2010 2 I,VasilikiEfstathiou,confirmthattheworkpresentedinthisthesisismyown. Whereinformationhas beenderivedfromothersources,Iconfirmthatthishasbeenindicatedinthethesis. Abstract Argumentationisavitalaspectofintelligentbehaviourbyhumans. Itprovidesthemeansforcomparing informationbyanalysingprosandconswhentryingtomakeadecision. Formalisingargumentationin computational environment has become a topic of increasing interest in artificial intelligence research overthelastdecade. Computationalargumentationinvolvesreasoningwithuncertaintybymakinguseoflogicinorder toformalizethepresentationofargumentsandcounterargumentsanddealwithconflictinginformation. A common assumption for logic-based argumentation is that an argument is a pair Φ,α where Φ is (cid:104) (cid:105) aconsistentsetwhichisminimalforentailingaclaimα. Differentlogicsprovidedifferentdefinitions forconsistencyandentailmentandhencegivedifferentoptionsforformalisingargumentsandcounte- rarguments. The expressivity of classical propositional logic allows for complicated knowledge to be represented but its computational cost is an issue. This thesis is based on monological argumentation using classical propositional logic [12] and aims in developing algorithms that are viable despite the computational cost. The proposed solution adapts well established techniques for automated theorem proving,basedonresolutionandconnectiongraphs. Aconnectiongraphisagraphwhereeachnodeis aclauseandeacharcdenotesthereexistcomplementarydisjunctsbetweennodes. Aconnectiongraph allows for a substantially reduced search space to be used when seeking all the arguments for a claim fromagivenknowledgebase. Inaddition,itsstructureprovidesinformationonhowitsnodescanbelin- kedwitheachotherbyresolution,providingthiswaythebasisforapplyingalgorithmswhichsearchfor argumentsbytraversingthegraph. Thecorrectnessofthisapproachissupportedbytheoreticalresults, while experimental evaluation demonstrates the viability of the algorithms developed. In addition, an extensionofthetheoreticalworkforpropositionallogictofirst-orderlogicisintroduced. Acknowledgements I would like to thank my supervisor Tony Hunter for his guidance on my work and his continuous encouragement and advice during my PhD. I am grateful to Tony for introducing me to the area of argumentationandgivingmethechancetoworkwithhimontheArgumentationFactoryproject. Ialso wishtothankRobinHirschandEmmanuelLetierforassessingmyprogressduringmyPhD.Thanksto NikosGorogiannisforbeingalwayswillingtohelpwithtechnicalissuesandMattWilliamsforproviding actualmedicaldataforexperimentation. ThankstomyexaminersPaulKrauseandOdinaldoRodrigues forreadingthisthesisandtakingpartinmyexam. Ithankmyfamilyandfriendsfortheirmoralsupport, special thanks to Anna without whose help at earlier stages of my studies I might had not managed to startthisPhD.Finally,IwouldliketoexpressmygratitudetoEPSRCforfundingthisresearch. Contents 1 Introduction 11 1.1 Logicalargumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2 Problemstatement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.3 Proposedsolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.4 Scopeofthisthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.5 Contributionofthiswork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.5.1 Algorithmsforreducingthesearchspaceforarguments . . . . . . . . . . . . . 14 1.5.2 Algorithmsforproducingarguments . . . . . . . . . . . . . . . . . . . . . . . . 14 1.5.3 Algorithmsforgeneratingcounterarguments . . . . . . . . . . . . . . . . . . . 14 1.5.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.5.5 Extensiontofirst-orderlogic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.6 Listofpublications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.7 Structureofthethesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2 Background 17 2.1 Existingargumentationsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.1 Abstractargumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.2 Argumentationbasedondefeasiblelogic . . . . . . . . . . . . . . . . . . . . . 18 2.1.3 Assumptionbasedargumentation . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 Argumentationbasedonclassicallogic . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.1 Pollock’sproposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.2 AmgoudandCayrol’sproposal . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.3 BesnardandHunter’sproposal . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.4 Computationalissuesinargumentation . . . . . . . . . . . . . . . . . . . . . . 31 2.3 Existingimplementationsofargumentationsystems . . . . . . . . . . . . . . . . . . . . 32 2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3 Reducingthesearchspaceforarguments 34 3.1 Thelanguageofclauses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 C 3.1.1 Definitionof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 C 3.1.2 Relationsin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 C Contents 6 3.2 Resolutionforsatisfiabilitychecks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2.1 Theresolutionproofprocedure. . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2.2 Linearresolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3 ConnectionGraphsforpropositionalclauses . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3.1 Connectiongraphdefinitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3.2 ConnectiongraphsforargumentsinCNF . . . . . . . . . . . . . . . . . . . . . 43 3.4 Algorithmsforproducingconnectiongraphs . . . . . . . . . . . . . . . . . . . . . . . . 48 3.4.1 Algorithmforthefocalgraph . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.4.2 Algorithmforthequerygraph . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.4.3 Algorithmforzones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.5 Experimentalresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4 Searchingforarguments 53 4.1 Argumentsin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 C 4.1.1 Propertiesofdeductionsandargumentsin . . . . . . . . . . . . . . . . . . . . 55 C 4.1.2 TheSupportbasein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 C 4.2 Definitionsforprooftreesforarguments . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.2.1 Thepresupporttree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.2.2 Thecompletepresupporttree. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.2.3 Thesupporttree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.2.4 Theminimalitycheck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.3 Algorithmsforproducingprooftrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.3.1 Algorithmforproducingcompletepresupporttrees . . . . . . . . . . . . . . . . 78 4.3.2 Algorithmforselectingthesupporttrees. . . . . . . . . . . . . . . . . . . . . . 80 4.4 Experimentalresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5 Searchingforcanonicalundercuts 85 5.1 Reducingthesearchspaceforcanonicalundercuts . . . . . . . . . . . . . . . . . . . . 85 5.1.1 Thesetofstrongresolvents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.1.2 Usingthestrongresolventstofindcanonicalundercuts . . . . . . . . . . . . . . 87 5.2 Usingasupporttreetogeneratecanonicalundercuts . . . . . . . . . . . . . . . . . . . 91 5.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.3.1 Algorithmforgeneratingresolvents . . . . . . . . . . . . . . . . . . . . . . . . 93 5.3.2 Algorithmsforgeneratingcounterarguments . . . . . . . . . . . . . . . . . . . 95 5.3.3 Algorithmforargumenttrees. . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.3.4 Algorithmforthewarrantcheck . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Contents 7 6 Implementation 100 6.1 Systemarchitecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.2 Usingthesystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.2.1 Givingtheinput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.2.2 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.3 Experimentalevaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 7 Extendingtofirst-orderlogic 110 7.1 Argumentationforalanguageofquantifiedclauses . . . . . . . . . . . . . . . . . . . . 110 7.2 Relationsonfirst-orderclauses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 7.3 ConnectionGraphsforfirst-orderclauses . . . . . . . . . . . . . . . . . . . . . . . . . 115 7.4 Prooftreesforfirst-orderclauses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 7.5 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 7.5.1 Algorithmforproducingcompleteassignmenttrees . . . . . . . . . . . . . . . . 126 7.5.2 Algorithmsforselectingtheminimalandconsistentassignmenttrees . . . . . . 130 7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 8 Conclusions 132 8.1 Argumentationoverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 8.2 Contributionofthiswork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 8.3 Assessmentandfurtherwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 8.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 A Exampleknowledgebases 136 List of Figures 3.1 Focalgraphsizevariationwiththeclauses-to-variablesratio . . . . . . . . . . . . . . . 51 4.1 ApplyingalgorithmSearchTree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.1 DiagramwiththemajorclassesofJArgue . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.2 Comparisonintimeperargumenttreenodeforknowledgebaseswith2-placeand3-place clauses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 7.1 ApplyingalgorithmFirstOrderSearchTree . . . . . . . . . . . . . . . . . . . . . . . . 129 List of Tables 4.1 Experimentaldataongeneratingpresupporttrees . . . . . . . . . . . . . . . . . . . . . 83 6.1 Experimentaldataongeneratingargumenttreeswithknowledgebasesof1and2-place clauses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.2 Experimentaldataongeneratingargumenttreeswithknowledgebasesof1and3-place clauses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 List of Algorithms 3.1 GetFocal(∆,φ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.2 GetQueryGraph(Φ,ψ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3 RetrieveZones(Φ,ψ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.1 SearchTree(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.2 IsMinimal((N,A,f)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.1 GetSResolvents((N,A,f)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.2 GetCounterarguments((N,A,f)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.3 ArgumentTree((N ,A ,f )) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 0 0 0 5.4 Mark((N,A)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 7.1 FirstOrderSearchTree(v) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 7.2 IsMinimal(N,A,e,f,g,h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 7.3 IsConsistent(N,A,e,f,g,h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Description: