ebook img

Algorithms and Programs of Dynamic Mixture Estimation : Unified Approach to Different Types of Components PDF

116 Pages·2017·3.814 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Algorithms and Programs of Dynamic Mixture Estimation : Unified Approach to Different Types of Components

SPRINGER BRIEFS IN STATISTICS Ivan Nagy Evgenia Suzdaleva Algorithms and Programs of Dynamic Mixture Estimation Unified Approach to Different Types of Components 123 SpringerBriefs in Statistics More information about this series at http://www.springer.com/series/8921 Ivan Nagy Evgenia Suzdaleva (cid:129) Algorithms and Programs of Dynamic Mixture Estimation fi Uni ed Approach to Different Types of Components 123 IvanNagy Evgenia Suzdaleva Department ofSignal Processing Department ofSignal Processing Institute of Information Theory and Institute of Information Theory and Automation of theCzech Academy of Automation of theCzech Academy of SciencesandCzech Technical University Sciences inPrague Prague Prague Czech Republic Czech Republic ISSN 2191-544X ISSN 2191-5458 (electronic) SpringerBriefs inStatistics ISBN978-3-319-64670-1 ISBN978-3-319-64671-8 (eBook) DOI 10.1007/978-3-319-64671-8 LibraryofCongressControlNumber:2017947851 ©TheAuthor(s)2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Acknowledgements This research was supported by the project GAČR GA15-03564S. v Contents 1 Introduction.... .... .... ..... .... .... .... .... .... ..... .... 1 1.1 On Dynamic Mixtures ..... .... .... .... .... .... ..... .... 1 1.2 General Conventions . ..... .... .... .... .... .... ..... .... 5 2 Basic Models ... .... .... ..... .... .... .... .... .... ..... .... 9 2.1 Regression Model.... ..... .... .... .... .... .... ..... .... 9 2.1.1 Estimation.... ..... .... .... .... .... .... ..... .... 10 2.1.2 Point Estimates..... .... .... .... .... .... ..... .... 11 2.1.3 Prediction .... ..... .... .... .... .... .... ..... .... 12 2.2 Categorical Model ... ..... .... .... .... .... .... ..... .... 12 2.2.1 Estimation.... ..... .... .... .... .... .... ..... .... 14 2.2.2 Point Estimates..... .... .... .... .... .... ..... .... 14 2.2.3 Prediction .... ..... .... .... .... .... .... ..... .... 15 2.3 State-Space Model ... ..... .... .... .... .... .... ..... .... 15 2.3.1 State Estimation .... .... .... .... .... .... ..... .... 16 3 Statistical Analysis of Dynamic Mixtures.. .... .... .... ..... .... 19 3.1 Dynamic Mixture.... ..... .... .... .... .... .... ..... .... 19 3.2 Unified Approach to Mixture Estimation ... .... .... ..... .... 20 3.2.1 The Component Part. .... .... .... .... .... ..... .... 20 3.2.2 The Pointer Part .... .... .... .... .... .... ..... .... 21 3.2.3 Main Subtasks of Mixture Estimation.... .... ..... .... 22 3.2.4 General Algorithm .. .... .... .... .... .... ..... .... 24 3.3 Mixture Prediction ... ..... .... .... .... .... .... ..... .... 24 3.3.1 Pointer Prediction ... .... .... .... .... .... ..... .... 25 3.3.2 Data Prediction..... .... .... .... .... .... ..... .... 27 4 Dynamic Mixture Estimation... .... .... .... .... .... ..... .... 29 4.1 Normal Regression Components.. .... .... .... .... ..... .... 29 4.1.1 Algorithm .... ..... .... .... .... .... .... ..... .... 30 4.1.2 Simple Program .... .... .... .... .... .... ..... .... 31 4.1.3 Comments.... ..... .... .... .... .... .... ..... .... 33 vii viii Contents 4.2 Categorical Components.... .... .... .... .... .... ..... .... 34 4.2.1 Algorithm .... ..... .... .... .... .... .... ..... .... 35 4.2.2 Simple Program .... .... .... .... .... .... ..... .... 36 4.2.3 Comments.... ..... .... .... .... .... .... ..... .... 38 4.3 State-Space Components.... .... .... .... .... .... ..... .... 39 4.3.1 Algorithm .... ..... .... .... .... .... .... ..... .... 40 4.3.2 Simple Program .... .... .... .... .... .... ..... .... 41 4.3.3 Comments.... ..... .... .... .... .... .... ..... .... 42 5 Program Codes . .... .... ..... .... .... .... .... .... ..... .... 45 5.1 Main Program... .... ..... .... .... .... .... .... ..... .... 45 5.1.1 Comments.... ..... .... .... .... .... .... ..... .... 47 5.2 Subroutines. .... .... ..... .... .... .... .... .... ..... .... 49 5.2.1 Initialization of Estimation .... .... .... .... ..... .... 49 5.2.2 Computation of Proximities.... .... .... .... ..... .... 51 5.2.3 Update of Component Statistics .... .... .... ..... .... 53 5.3 Collection of Programs..... .... .... .... .... .... ..... .... 55 6 Experiments.... .... .... ..... .... .... .... .... .... ..... .... 57 6.1 Mixture with Regression Components . .... .... .... ..... .... 58 6.1.1 Well-Separated Components... .... .... .... ..... .... 60 6.1.2 Weak Components .. .... .... .... .... .... ..... .... 64 6.1.3 Reduced Number of Components... .... .... ..... .... 66 6.1.4 High-Dimensional Output. .... .... .... .... ..... .... 66 6.1.5 Big Noise .... ..... .... .... .... .... .... ..... .... 68 6.2 Mixture with Categorical Components. .... .... .... ..... .... 70 6.3 Mixture with State-Space Components. .... .... .... ..... .... 71 6.4 Case Studies.... .... ..... .... .... .... .... .... ..... .... 75 6.4.1 Static Normal Components.... .... .... .... ..... .... 76 6.4.2 Dynamic Normal Components . .... .... .... ..... .... 81 7 Appendix A (Supporting Notions) ... .... .... .... .... ..... .... 85 7.1 Useful Matrix Formulas .... .... .... .... .... .... ..... .... 85 7.2 Matrix Trace.... .... ..... .... .... .... .... .... ..... .... 85 7.3 Dirac and Kronecker Functions .. .... .... .... .... ..... .... 86 7.4 Gamma and Beta Functions . .... .... .... .... .... ..... .... 87 7.5 The Bayes Rule . .... ..... .... .... .... .... .... ..... .... 89 7.6 The Chain Rule . .... ..... .... .... .... .... .... ..... .... 90 7.7 The Natural Conditions of Control.... .... .... .... ..... .... 90 7.8 Conjugate Dirichlet Distribution.. .... .... .... .... ..... .... 90 7.8.1 The Normalization Constant of Dirichlet Distribution. .... 91 7.8.2 Statistics Update with the Conjugate Dirichlet Distribution... ..... .... .... .... .... .... ..... .... 92 7.8.3 The Parameter Point Estimate of the Categorical Model.. .... .... .... .... ..... .... 92 7.8.4 Data Prediction with Dirichlet Distribution.... ..... .... 93 Contents ix 7.9 Conjugate Gauss-Inverse-Wishart Distribution ... .... ..... .... 94 7.9.1 Statistics Update for the Normal Regression Model .. .... 94 7.9.2 The Parameter Point Estimate of the Regression Model ... 95 7.9.3 The Proximity Evaluation. .... .... .... .... ..... .... 96 8 Appendix B (Supporting Programs).. .... .... .... .... ..... .... 99 8.1 Simulation Programs.. ..... .... .... .... .... .... ..... .... 99 8.1.1 The Simulation of Pointer Values... .... .... ..... .... 99 8.1.2 The Simulation of Mixture with Regression Components .. .... .... .... ..... .... 100 8.1.3 The Simulation of Mixture with Discrete Components.... 102 8.1.4 The Simulation of Mixture with State-Space Components.. .... .... .... ..... .... 103 8.2 Supporting Subroutines..... .... .... .... .... .... ..... .... 105 8.2.1 Scilab Start Settings . .... .... .... .... .... ..... .... 105 8.2.2 The Point Estimation of a Normal Regression Model. .... 105 8.2.3 The Value of a Normal Multivariate Distribution .... .... 106 8.2.4 Discrete Regression Vector Coding.. .... .... ..... .... 106 8.2.5 Kalman Filter . ..... .... .... .... .... .... ..... .... 108 8.2.6 Matrix Upper–Lower Factorization.. .... .... ..... .... 109 8.2.7 Transition Table Normalization. .... .... .... ..... .... 109 8.2.8 The Approximation of Normal Pdfs by a Single Pdf . .... 110 References.... .... .... .... ..... .... .... .... .... .... ..... .... 111 Chapter 1 Introduction 1.1 OnDynamicMixtures Mixture models are known to have the ability to describe a rather wide class of realsystems.Theyhavethepropertyofuniversalapproximationwhichtheoretically meansthatwithasufficientlylargenumberofcomponents,theyareabletomodel an arbitrary system showing signs of a multimodal, nonlinear behavior, see, e.g., [1].Theareaoftheirapplicationisreallygreat(industry,engineering,socialfields, medicine, transportation, etc.) [2–7], and there is no particular need to introduce themindetail.However,itshouldbehighlightedwhichpropertiesofmixturesare thesubjectofinterestinthepresentedbook. Any mixture model is composed of two parts—components and a switching model. Components describe different modes of behavior of the modeled system. Switchingthecomponentsismodeledasadiscreterandomvariabledescribedbythe categoricaldistribution.Thisvariableiscalledthepointer,valuesofwhichrepresent labelsofindividualcomponents(usingtheterminologyfrom[8, 31]adoptedinthis book).Ateachtimeinstantthepointerindicatesthecurrentlyactivecomponent. Asitisseenfromthetitle,thebookfocusesondynamicmixtures.Bydynamic mixtureswemeanmainlyamixturewiththedynamicswitchingmodel.Itmeansthat switchingdependsonthevalueofthelastactivecomponent.Thecomponentscan beeitherstatic(i.e.,withoutdelayedvaluesofthemodeledvariableinthecondition) ordynamic. The dynamic switching of components may not always exist. Let us say, for example,thatasubjectofmodelingistheseverityoftrafficaccidentswiththeval- ues:“fatal”,“severeinjury”,“lightinjury”and“propertydamage”.Inthiscase,the severitycanbeusedasthepointervariable,whichhasfourpossiblevalues.Com- ponentscoulddescribevariousdataaccompanyingtheaccident—“speed”,“weather conditions”,“visibilityontheroad”,“roadslipperiness”,etc.Noticethatthedynamic model is not suitable here, since there is no dependence in switching the accident severity. ©TheAuthor(s)2017 1 I.NagyandE.Suzdaleva,AlgorithmsandProgramsofDynamic MixtureEstimation,SpringerBriefsinStatistics,DOI10.1007/978-3-319-64671-8_1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.