AlgorithmicGraphTheory PartV -ApproximationAlgorithms for GraphProblems MartinMilanicˇ [email protected] UniversityofPrimorska,Koper,Slovenia DipartimentodiInformatica Universita` degliStudidiVerona,March2013 1/26 Coping with NP-hardness Thereare severalapproacheson howto dealwith (the intractability of) NP-hard problems: polynomialalgorithmsforparticularinputinstances approximationalgorithms heuristics, local optimization “efficient” exponentialalgorithms randomizedalgorithms parameterizedcomplexity (fixed-parametertractable (FPT)algorithms) 2/26 What we’ll do Basic Definitions. 1 2-Approximation Algorithm for Vertex Cover. 2 Approximation Algorithms for the Metric TSP. 3 2/26 BASICS OF APPROXIMATION ALGORITHMS. 2/26 Coping with NP-hardness Heuristics: intuitive algorithms; 3/26 Coping with NP-hardness Heuristics: intuitive algorithms; guaranteedto run in polynomialtime; 3/26 Coping with NP-hardness Heuristics: intuitive algorithms; guaranteedto run in polynomialtime; noguaranteeonqualityof solution. 3/26 Coping with NP-hardness Heuristics: intuitive algorithms; guaranteedto run in polynomialtime; noguaranteeonqualityof solution. Approximationalgorithms: guaranteedto run in polynomialtime; 3/26 Coping with NP-hardness Heuristics: intuitive algorithms; guaranteedto run in polynomialtime; noguaranteeonqualityof solution. Approximationalgorithms: guaranteedto run in polynomialtime; guaranteedto find “high quality”solution,say within1% of optimum; 3/26 Coping with NP-hardness Heuristics: intuitive algorithms; guaranteedto run in polynomialtime; noguaranteeonqualityof solution. Approximationalgorithms: guaranteedto run in polynomialtime; guaranteedto find “high quality”solution,say within1% of optimum; Obstacle: needto proveasolution’s valueis close to optimum, withouteven knowingwhatthe optimumvalueis! 3/26
Description: