Dieck_titelei 1.8.2008 13:23 Uhr Seite 1 Dieck_titelei 1.8.2008 13:23 Uhr Seite 2 EMS Textbooks in Mathematics EMS Textbooks in Mathematics isa book series aimed at students or professional mathematici- ans seeking an introduction into a particular field. The individual volumes are intended to provide not only relevant techniques, results and their applications, but afford insight into the motivations and ideas behind the theory. Suitably designed exercises help to master the subject and prepare the reader for the study of more advanced and specialized literature. Jørn Justesen and Tom Høholdt, A Course In Error-Correcting Codes Markus Stroppel, Locally Compact Groups Peter Kunkel and Volker Mehrmann, Differential-Algebraic Equations Dorothee D. Haroske and Hans Triebel, Distributions, Sobolev Spaces, Elliptic Equations Thomas Timmermann, An Invitation to Quantum Groups and Duality Marek Jarnicki and Peter Pflug, First Steps in Several Complex Variables: Reinhardt Domains Oleg Bogopolski, Introduction to Group Theory Dieck_titelei 1.8.2008 13:23 Uhr Seite 3 Tammo tom Dieck Algebraic Topology Dieck_titelei 1.8.2008 13:23 Uhr Seite 4 Author: Tammo tom Dieck Mathematisches Institut Georg-August-Universität Göttingen Bunsenstrasse 3–5 37073 Göttingen Germany E-mail: [email protected] 2000 Mathematics Subject Classification: 55-01, 57-01 Key words: Covering spaces, fibrations, cofibrations, homotopy groups, cell complexes, fibre bundles, vector bundles, classifying spaces, singular and axiomatic homology and cohomology, smooth manifolds, duality, characteristic classes, bordism. The Swiss National Library lists this publication in The Swiss Book, the Swiss national bibliography, and the detailed bibliographic data are available on the Internet at http://www.helveticat.ch. ISBN 978-3-03719-048-7 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of the copyright owner must be obtained. © 2008 European Mathematical Society Contact address: European Mathematical Society Publishing House Seminar for Applied Mathematics ETH-Zentrum FLI C4 CH-8092 Zürich Switzerland Phone: +41 (0)44 632 34 36 Email: [email protected] Homepage: www.ems-ph.org Typeset using the author’s TEX files: I. Zimmermann, Freiburg Printed on acid-free paper produced from chlorine-free pulp. TCF°° Printed in Germany 9 8 7 6 5 4 3 2 1 Preface Algebraic topology is the interplay between “continuous” and “discrete” mathe- matics. Continuousmathematicsisformulatedinitsgeneralforminthelanguage oftopologicalspacesandcontinuousmaps. Discretemathematicsisusedtoexpress theconceptsofalgebraandcombinatorics. Inmathematicallanguage: weusethe realnumberstoconceptualizecontinuousformsandwemodeltheseformswiththe useoftheintegers. Forexample,ourintuitiveideaoftimesupposesacontinuous process without gaps, an unceasing succession of moments. But in practice we usediscretemodels,machinesornaturalprocesseswhichwedefinetobeperiodic. Likewiseweconceiveofaspaceasacontinuumbutwemodelthatspaceasaset ofdiscreteforms. Thustheessenceoftimeandspaceisofatopologicalnaturebut algebraictopologyallowstheirrealizationstobeofanalgebraicnature. Classical algebraic topology consists in the construction and use of functors fromsomecategoryoftopologicalspacesintoanalgebraiccategory,sayofgroups. Butonecanalsopostulatethatglobalqualitativegeometryisitselfofanalgebraic nature. Consequentlytherearetwoimportantviewpointsfromwhichonecanstudy algebraictopology: homologyandhomotopy. Homology,inventedbyHenriPoincaré,iswithoutdoubtoneofthemostinge- niousandinfluentialinventionsinmathematics. Thebasicideaofhomologyisthat westartwithageometricobject(aspace)whichisgivenbycombinatorialdata(a simplicialcomplex). Thenthelinearalgebraandboundaryrelationsdeterminedby thesedataareusedtoproducehomologygroups. Inthisbook,thechaptersonsingularhomology,homology,homologicalalgebra andcellularhomologyconstituteanintroductiontohomologytheory(construction, axiomaticanalysis,classicalapplications). Thechaptersrequireaparallelreading– thisindicatesthecomplexityofthematerialwhichdoesnothaveasimpleintuitive explanation. Ifoneknowsoracceptssomeresultsaboutmanifolds,oneshouldread theconstructionofbordismhomology. Itappearsinthefinalchapterbutoffersa simpleexplanationoftheideaofhomology. Thesecondaspectofalgebraictopology,homotopytheory,beginsagainwiththe constructionoffunctorsfromtopologytoalgebra. Butthisapproachisimportant fromanotherviewpoint. Homotopytheoryshowsthatthecategoryoftopological spaceshasitselfakindof(hidden)algebraicstructure. Thisbecomesimmediately clear in the introductory chapters on the fundamental group and covering space theory. The study of algebraic topology is often begun with these topics. The notions of fibration and cofibration, which are at first sight of a technical nature, are used to indicate that an arbitrary continuous map has something like a kernel andacokernel–thebeginningoftheinternalalgebraicstructureoftopology. (The chapteronhomotopygroups,whichisessentialtothisbook,shouldalsobestudied vi Preface for its applications beyond our present study.) In the ensuing chapter on duality theanalogytoalgebrabecomesclearer: Forasuitableclassofspacesthereexists adualitytheorywhichresemblesformallythedualitybetweenavectorspaceand itsdualspace. ThefirstmaintheoremofalgebraictopologyistheBrouwer–Hopfdegreethe- orem. Weprovethistheorembyelementarymethodsfromhomotopytheory. Itis afairlydirectconsequenceoftheBlakers–Masseyexcisiontheoremforwhichwe presenttheelementaryproofofDieterPuppe. Laterweindicateproofsofthede- greetheorembasedonhomologyandthenondifferentialtopology. Itisabsolutely essential to understand this theorem from these three view points. The theorem saysthatthesetofself-mapsofapositivedimensionalsphereunderthehomotopy relation has the structure of a (homotopically defined) ring – and this ring is the ringofintegers. The second part of the book develops further theoretical concepts (like coho- mology)andpresentsmoreadvancedapplicationstomanifolds,bundles,homotopy theory, characteristic classes and bordism theory. The reader is strongly urged to readtheintroductiontoeachofthechaptersinordertoobtainmorecoherentinfor- mationaboutthecontentsofthebook. Wordsinboldfaceitalicaredefinedattheplacewheretheyappearevenifthere isnoindicationofaformaldefinition. Inaddition,thereisalistofstandardorglobal symbols. Theproblemsectionscontainexercises,examples,counter-examplesand further results, and also sometimes ask the reader to extend concepts in further detail. Itisnotassumedthatalloftheproblemswillbecompletelyworkedout,but it is strongly recommended that they all be read. Also, the reader will find some familiaritywiththefullbibliography,notjustthereferencescitedinthetext,tobe crucialforfurtherstudies. Morebackgroundmaterialaboutspacesandmanifolds may,atleastforawhile,beobtainedfromtheauthor’shomepage. IwouldliketothankIreneZimmermannandManfredKarbefortheirhelpand effortinpreparingthemanuscriptforpublication. Göttingen,September2008 TammotomDieck Contents Preface v 1 TopologicalSpaces 1 1.1 BasicNotions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Subspaces. QuotientSpaces . . . . . . . . . . . . . . . . . . . . 5 1.3 ProductsandSums . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 CompactSpaces . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5 ProperMaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.6 ParacompactSpaces . . . . . . . . . . . . . . . . . . . . . . . . 15 1.7 TopologicalGroups . . . . . . . . . . . . . . . . . . . . . . . . 15 1.8 TransformationGroups. . . . . . . . . . . . . . . . . . . . . . . 17 1.9 ProjectiveSpaces. GrassmannManifolds . . . . . . . . . . . . . 21 2 TheFundamentalGroup 24 2.1 TheNotionofHomotopy . . . . . . . . . . . . . . . . . . . . . 25 2.2 FurtherHomotopyNotions. . . . . . . . . . . . . . . . . . . . . 30 2.3 StandardSpaces . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.4 MappingSpacesandHomotopy . . . . . . . . . . . . . . . . . . 37 2.5 TheFundamentalGroupoid . . . . . . . . . . . . . . . . . . . . 41 2.6 TheTheoremofSeifertandvanKampen . . . . . . . . . . . . . 45 2.7 TheFundamentalGroupoftheCircle . . . . . . . . . . . . . . . 47 2.8 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.9 HomotopyGroupoids . . . . . . . . . . . . . . . . . . . . . . . 58 3 CoveringSpaces 62 3.1 LocallyTrivialMaps. CoveringSpaces . . . . . . . . . . . . . . 62 3.2 FibreTransport. ExactSequence . . . . . . . . . . . . . . . . . 66 3.3 ClassificationofCoverings . . . . . . . . . . . . . . . . . . . . . 70 3.4 ConnectedGroupoids . . . . . . . . . . . . . . . . . . . . . . . 72 3.5 ExistenceofLiftings . . . . . . . . . . . . . . . . . . . . . . . . 76 3.6 TheUniversalCovering . . . . . . . . . . . . . . . . . . . . . . 78 4 ElementaryHomotopyTheory 81 4.1 TheMappingCylinder . . . . . . . . . . . . . . . . . . . . . . . 81 4.2 TheDoubleMappingCylinder . . . . . . . . . . . . . . . . . . . 84 4.3 Suspension. HomotopyGroups . . . . . . . . . . . . . . . . . . 86 4.4 LoopSpace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 viii Contents 4.5 GroupsandCogroups . . . . . . . . . . . . . . . . . . . . . . . 90 4.6 TheCofibreSequence . . . . . . . . . . . . . . . . . . . . . . . 92 4.7 TheFibreSequence . . . . . . . . . . . . . . . . . . . . . . . . 97 5 CofibrationsandFibrations 101 5.1 TheHomotopyExtensionProperty . . . . . . . . . . . . . . . . 101 5.2 Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.3 ReplacingaMapbyaCofibration . . . . . . . . . . . . . . . . . 110 5.4 CharacterizationofCofibrations . . . . . . . . . . . . . . . . . . 113 5.5 TheHomotopyLiftingProperty . . . . . . . . . . . . . . . . . . 115 5.6 Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.7 ReplacingaMapbyaFibration . . . . . . . . . . . . . . . . . . 120 6 HomotopyGroups 121 6.1 TheExactSequenceofHomotopyGroups . . . . . . . . . . . . 122 6.2 TheRoleoftheBasePoint . . . . . . . . . . . . . . . . . . . . . 126 6.3 SerreFibrations . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6.4 TheExcisionTheorem . . . . . . . . . . . . . . . . . . . . . . . 133 6.5 TheDegree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.6 TheBrouwerFixedPointTheorem . . . . . . . . . . . . . . . . 137 6.7 HigherConnectivity . . . . . . . . . . . . . . . . . . . . . . . . 141 6.8 ClassicalGroups . . . . . . . . . . . . . . . . . . . . . . . . . . 146 6.9 ProofoftheExcisionTheorem. . . . . . . . . . . . . . . . . . . 148 6.10 FurtherApplicationsofExcision . . . . . . . . . . . . . . . . . . 152 7 StableHomotopy. Duality 159 7.1 AStableCategory . . . . . . . . . . . . . . . . . . . . . . . . . 159 7.2 MappingCones. . . . . . . . . . . . . . . . . . . . . . . . . . . 164 7.3 EuclideanComplements . . . . . . . . . . . . . . . . . . . . . . 168 7.4 TheComplementDualityFunctor . . . . . . . . . . . . . . . . . 169 7.5 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 7.6 HomologyandCohomologyforPointedSpaces . . . . . . . . . 179 7.7 SpectralHomologyandCohomology . . . . . . . . . . . . . . . 181 7.8 AlexanderDuality . . . . . . . . . . . . . . . . . . . . . . . . . 185 7.9 CompactlyGeneratedSpaces . . . . . . . . . . . . . . . . . . . 186 8 CellComplexes 196 8.1 SimplicialComplexes . . . . . . . . . . . . . . . . . . . . . . . 197 8.2 WhiteheadComplexes . . . . . . . . . . . . . . . . . . . . . . . 199 8.3 CW-Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 8.4 WeakHomotopyEquivalences . . . . . . . . . . . . . . . . . . . 207 8.5 CellularApproximation . . . . . . . . . . . . . . . . . . . . . . 210 8.6 CW-Approximation . . . . . . . . . . . . . . . . . . . . . . . . 211 Contents ix 8.7 HomotopyClassification . . . . . . . . . . . . . . . . . . . . . . 216 8.8 Eilenberg–MacLaneSpaces . . . . . . . . . . . . . . . . . . . . 217 9 SingularHomology 223 9.1 SingularHomologyGroups . . . . . . . . . . . . . . . . . . . . 224 9.2 TheFundamentalGroup . . . . . . . . . . . . . . . . . . . . . . 227 9.3 Homotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 9.4 BarycentricSubdivision. Excision . . . . . . . . . . . . . . . . . 231 9.5 WeakEquivalencesandHomology . . . . . . . . . . . . . . . . 235 9.6 HomologywithCoefficients . . . . . . . . . . . . . . . . . . . . 237 9.7 TheTheoremofEilenbergandZilber . . . . . . . . . . . . . . . 238 9.8 TheHomologyProduct . . . . . . . . . . . . . . . . . . . . . . 241 10 Homology 244 10.1 TheAxiomsofEilenbergandSteenrod . . . . . . . . . . . . . . 244 10.2 ElementaryConsequencesoftheAxioms . . . . . . . . . . . . . 246 10.3 JordanCurves. InvarianceofDomain . . . . . . . . . . . . . . . 249 10.4 ReducedHomologyGroups . . . . . . . . . . . . . . . . . . . . 252 10.5 TheDegree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 10.6 TheTheoremofBorsukandUlam . . . . . . . . . . . . . . . . . 261 10.7 Mayer–VietorisSequences . . . . . . . . . . . . . . . . . . . . . 265 10.8 Colimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 10.9 Suspension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 11 HomologicalAlgebra 275 11.1 Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 11.2 ExactSequences . . . . . . . . . . . . . . . . . . . . . . . . . . 279 11.3 ChainComplexes . . . . . . . . . . . . . . . . . . . . . . . . . . 283 11.4 Cochaincomplexes . . . . . . . . . . . . . . . . . . . . . . . . . 285 11.5 NaturalChainMapsandHomotopies . . . . . . . . . . . . . . . 286 11.6 ChainEquivalences . . . . . . . . . . . . . . . . . . . . . . . . 287 11.7 LinearAlgebraofChainComplexes . . . . . . . . . . . . . . . . 289 11.8 TheFunctorsTorandExt . . . . . . . . . . . . . . . . . . . . . 292 11.9 UniversalCoefficients . . . . . . . . . . . . . . . . . . . . . . . 295 11.10 TheKünnethFormula . . . . . . . . . . . . . . . . . . . . . . . 298 12 CellularHomology 300 12.1 CellularChainComplexes . . . . . . . . . . . . . . . . . . . . . 300 12.2 CellularHomologyequalsHomology . . . . . . . . . . . . . . . 304 12.3 SimplicialComplexes . . . . . . . . . . . . . . . . . . . . . . . 306 12.4 TheEulerCharacteristic . . . . . . . . . . . . . . . . . . . . . . 308 12.5 EulerCharacteristicofSurfaces . . . . . . . . . . . . . . . . . . 311
Description: