ebook img

Algebraic Number Theory: Vorlesung 2011 PDF

114 Pages·2016·0.726 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Algebraic Number Theory: Vorlesung 2011

1 Algebraic Number Theory Vorlesung 2011 Prof. Dr. G. Nebe, Lehrstuhl D fu¨r Mathematik, RWTH Aachen Contents 1 Commutative Theory. 4 1.1 The ring of integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.1 The integral closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.2 Norm, Trace and Discriminant. . . . . . . . . . . . . . . . . . . . . . . 6 An algorithm to determine an integral basis of a number field. . . . . . 9 1.1.3 Dedekind domains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2 Geometry of numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3 Finiteness of the ideal class group. . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.4 Dirichlet’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.5 Quadratic number fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.5.1 Imaginary quadratic number fields. . . . . . . . . . . . . . . . . . . . . 24 1.6 Ramification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.6.1 How to compute inertia degree and ramification index ? . . . . . . . . . 28 1.6.2 Hilbert’s theory of ramification for Galois extensions. . . . . . . . . . . 29 1.7 Cyclotomic fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.7.1 Quadratic Reciprocity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.8 Discrete valuation rings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1.8.1 Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 1.8.2 Hensel’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 1.8.3 Extension of valuations. . . . . . . . . . . . . . . . . . . . . . . . . . . 40 1.9 p-adic number fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 1.9.1 Unramified extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 1.10 Different and discriminant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2 Non-commutative theory. 49 2.1 Central simple algebras. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.1.1 Simple algebras. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.1.2 The theorem by Skolem and Noether. . . . . . . . . . . . . . . . . . . . 51 2.1.3 The Brauer group of K . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.2 Orders in separable algebras. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.2.1 Being a maximal order is a local property . . . . . . . . . . . . . . . . 54 2.3 Division algebras over complete discrete valuated fields. . . . . . . . . . . . . . 56 2.3.1 General properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.3.2 Finite residue class fields. . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.3.3 The central simple case: analysis . . . . . . . . . . . . . . . . . . . . . 59 2 CONTENTS 3 2.3.4 The central simple case: synthesis . . . . . . . . . . . . . . . . . . . . . 61 2.3.5 The inverse different. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.3.6 Matrix rings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.4 Crossed product algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.4.1 Factor systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.4.2 Crossed product algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.4.3 Splitting fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 2.4.4 Field extensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Ground field extensions. . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Field extensions of L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 2.4.5 A group isomorphism Br(K) ∼= Q/Z. . . . . . . . . . . . . . . . . . . . 70 2.5 Division algebras over global fields. . . . . . . . . . . . . . . . . . . . . . . . . 71 2.5.1 Surjectivity of the reduced norm . . . . . . . . . . . . . . . . . . . . . . 74 2.6 Maximal orders in separable algebras. . . . . . . . . . . . . . . . . . . . . . . . 75 2.6.1 The group of two-sided ideals. . . . . . . . . . . . . . . . . . . . . . . . 76 2.6.2 The Brandt groupoid. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 2.6.3 The finiteness of the class number. . . . . . . . . . . . . . . . . . . . . 79 2.6.4 The Eichler condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 2.6.5 Stable equivalence of ideals. . . . . . . . . . . . . . . . . . . . . . . . . 81 2.6.6 Algorithmic determination of classes and types . . . . . . . . . . . . . . 84 2.7 Automorphisms of algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 2.7.1 Skew Laurent series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 2.7.2 Automorphism groups of algebras . . . . . . . . . . . . . . . . . . . . . 94 2.7.3 The algebra A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 σ 2.7.4 The finite dimensional and central simple case. . . . . . . . . . . . . . . 95 2.7.5 Generalized cyclic algebras. . . . . . . . . . . . . . . . . . . . . . . . . 95 2.7.6 Restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 2.8 The Brauer group of Q((t)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 2.8.1 Discrete valuated skew fields. . . . . . . . . . . . . . . . . . . . . . . . 97 2.8.2 Skew Laurent series II . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Subfields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 2.8.3 Non-crossed products over Q((t)) . . . . . . . . . . . . . . . . . . . . . 99 2.8.4 An example where exponent (cid:54)= index . . . . . . . . . . . . . . . . . . . 100 3 Exercises. 103 Literatur: Neukirch, Algebraische Zahlentheorie Reiner, Maximal Orders Stichtenoth, Algebraic Function Fields (Seminar) Chapter 1 Commutative Theory. All rings are associative and have a unit. 1.1 The ring of integers 1.1.1 The integral closure Definition 1.1.1. An algebraic number field K is a finite extension of Q. √ Example. K = Q[ 5] ∼= Q[x]/(x2 −5). Remark 1.1.2. Let L/K be a finite extension of fields and let a ∈ L. Then (cid:15) : K[x] → a L,p(x) (cid:55)→ p(a)definesaK-algebrahomomorphismwithimageK[a](theminimalK-subalgebra of L that contains a). Since K[x] is a principal ideal domain, the kernel of (cid:15) is generated a by a monic polynomial Kern((cid:15) ) = (µ (x)). The image of (cid:15) is an integral domain, so a a a µ (x) ∈ K[x] irreducible. This uniquely determined monic irreducible polynomial µ is called a a the minimal polynomial of a over K. √ √ Example. a = 1+ 5 ∈ Q[ 5] ⇒ µ = x2−x−1 is the minimal polynomial of a over Q. 2 a Definition 1.1.3. If B is a ring and A a subring of the center Z(B) := {b ∈ B | bx = xb for all x ∈ B}, then B is called an A-algebra. If B is an A-algebra then b ∈ B is called integral over A, if there is n ∈ N and a ,...,a ∈ A 1 n such that ((cid:63)) bn +a bn−1 +...+a b+a = 0. 1 n−1 n B is called integral over A, if any element of B is integral over A. Theorem 1.1.4. Let B be an A-algebra and b ∈ B. The following are equivalent (a) b is integral over A. (b) The smallest A-subalgebra a A[b] of B, that contains b is a finitely generated A-module. (c) b is contained in some A-subalgebra of B, that is a finitely generated A-module. 4 1.1. THE RING OF INTEGERS 5 Proof. (a) ⇒ (b): If b is integral, then ((cid:63)) implies that A[b] = (cid:104)1,b,...,bn−1(cid:105) . A (b) ⇒ (c): Clear. (c) ⇒ (a): Let R = (cid:104)b ,...,b (cid:105) ≤ B be some A-subalgebra of B that contains b. Assume 1 n A wlog that 1 ∈ R. Then there are (not necessarily unique) a ∈ A such that ij n (cid:88) bb = a b for all 1 ≤ i,j ≤ n. i ij j j=1 Let f = det(xI − (a )) ∈ A[x] be the characteristic polynomial of (a ) ∈ An×n. Then n ij ij f ∈ A[X] is monic and f((a )) = 0 ∈ An×n. Therefore f(b)b = 0 for all 1 ≤ i ≤ n, so ij i f(b)1 = f(b) = 0, and hence b is integral over A. (cid:3) Example. √ √ (a) α := 1+ 5 ∈ Q[ 5] is integral over Z. 2 (b) 1 ∈ Q is not integral over Z. 2 Theorem 1.1.5. Let B be a commutative A-algebra and Int (B) := {b ∈ B | b integral over A}. A Then Int (B) is a subring of B called the integral closure of A in B. A Proof. We need to show that Int (B) is a ring, so closed under multiplication and addition. A Let b ,b ∈ Int (B) and 1 2 A A[b ] = (cid:104)c ,...,c (cid:105) , A[b ] = (cid:104)d ,...,d (cid:105) . 1 1 n A 2 1 m A Since c d = d c for all i,j and 1 ∈ A[b ]∩A[b ] we get i j j i 1 2 A[b ,b ] ⊂ (cid:104)c d | 1 ≤ i ≤ n,1 ≤ j ≤ m(cid:105) . 1 2 i j A ThisisasubringofB thatisafinitelygeneratedA-moduleandcontainsb +b ,b −b ,b b . (cid:3) 1 2 1 2 1 2 Theorem 1.1.6. Let C be a commutative ring, A ≤ B ≤ C. If C is integral over B and B is integral over A, then C is integral over A. Proof. Let c ∈ C. Since C is integral over B there are n ∈ N and b ,...,b ∈ B such that 1 n cn +b cn−1 +...+b c+b = 0. 1 n−1 n PutR := A[b ,...,b ]. SinceB isintegraloverAthisringR isafinitelygeneratedA-module. 1 n Moreover c ∈ R[c] and R[c] is a finitely generated R-module. So also R[c] is a finitely gener- ated A-module. and hence c is integral over A. (cid:3) Definition 1.1.7. Let A be an integral domain with field of fraction K := Quot(A). Int (K) := {x ∈ K | x is integral over A} A is called the integral closure of A in K. If A = Int (K), then A is called integrally closed. A 6 CHAPTER 1. COMMUTATIVE THEORY. Example. Z is integrally closed. √ Z[ 2 is integrally closed. √ Z[ 5] is not integrally closed. Theorem 1.1.8. Let L ⊇ K be a finite field extension and A ⊂ K integrally closed with K = Quot(A). The for any b ∈ L: b is integral over A, if and only if µ ∈ A[x]. b,K Proof. ⇐ clear. ⇒: Let b ∈ L be integral over A. Then there are n ∈ N and a ,...,a ∈ A such that 1 n bn +a bn−1 +...+a b+a = 0. 1 n−1 n Put p(x) = xn+a xn−1+...+a x+a ∈ A[x] and L˜ := Zerf (p) be the spitting field of 1 n−1 n K ˜ ˜ p, Then all zeros b ∈ L of p are integral over A. The minimal polynomial µ of b over K b,K divides p, so also the zeros of µ are integral over A. The coefficients of µ are polynomials b,K b,K in the zeros, so also integral over A. Since these lie in K, they indeed lie in Int (K) = A. So A µ ∈ A[x]. (cid:3) b,K Corollary 1.1.9. Let K be an algebraic number field. Then the ring of integers Z = Int (Z) = {a ∈ K | µ ∈ Z[x]}. K K a,Q Any Z-basis of Z is called an integral basis of K. K √ √ √ Example. For K = Q[ 2] we obtain Z = Z[ 2] and (1, 2) is a Z-basis of K. √ √ K √ If K = Q[ 5], then Z = Z[(1+ 5)/2] and (1,(1+ 5)/2) is a Z-basis of K. K In the exercise you prove the more general statement: Let 1 (cid:54)= d ∈ Z be square free and √ √ K := Q[ d], then α := 1+ d is integral over Z if and only if d ≡ 1. In this case (1,α) is an 2 √ 4 integral basis of K, in all other cases (1, d) is an integral basis. 1.1.2 Norm, Trace and Discriminant. Remark 1.1.10. Let L/K be a extension of fields of finite degree [L : K] := dim (L) = n < K ∞. (a) Any α ∈ L induces a K-linear map mult ∈ End (L);x (cid:55)→ αx. α K In particular this endomorphism has a trace, determinant, characteristic polynomial χ := χ and minimal polynomial µ := µ . α,K multα α,K multα (b) The map mult: L → End (L) is an injective homomorphism of K-algebras. K (c) The map S : L → K,α (cid:55)→ trace (mult ) is a K-linear map, called the trace of L L/K α over K. 1.1. THE RING OF INTEGERS 7 (d) ThemapN : L → K,α (cid:55)→ det(mult )ismultiplicative, i.e. N (αβ) = N (α)N (β) L/K α L/K L/K L/K for all α,β ∈ L. In particular it defines a group homomorphism N : L∗ → K∗ be- L/K tween the multiplicative groups L∗ and K∗ = (K \{0},·) of the fields. (e) Let α ∈ L. Then µ ∈ K[X] is an irreducible polynomial of degree d := [K(α) : α,K K] := dim (K(α)) dividing n and χ = µn/d. K α,K α,K (f) If χ = Xn −a Xn−1 +...+(−1)n−1a X +(−1)na ∈ K[X], then N (α) = a α,K 1 n−1 n L/K n and S (α) = a . L/K 1 Proof. Exercise. (cid:3) Theorem 1.1.11. Assume that L/K is a finite separable extension and let σ ,...,σ : L → 1 n K be the distinct K-algebra homomorphisms of L into the algebraic closure K of K (so n = [L : K]). Then for all α ∈ L (a) χ = (cid:81)n (X −σ (α)). α,K i=1 i (b) µ = (cid:81)d (X −α ) where {σ (α),...,σ (α)} = {α ,...,α } has order d = [K(α) : α,K i=1 i 1 n 1 d K]. (c) S (α) = (cid:80)n σ (α). L/K i=1 i (d) N (α) = (cid:81)n σ (α). L/K i=1 i Proof. (c) and (d) follow from (a) using Remark 1.1.10 (f) above. Tosee(b)letd := [K(α) : K]. SinceL/K isseparable,alsothesubfieldK(α)isseparableover K, so µ = (cid:81)d (X−α ) for d distinct α ∈ K. The d distinct K-algebra homomorphisms α,K i=1 i i ϕ ,...,ϕ from K(α) into K correspond to the d possible images ϕ (α) = α ∈ K of α. 1 d i i In particular this proves (a) and (b) if L = K(α). For the more general statement we use the following: Fact.1 Any K-algebra homomorphism τ : E → K of some algebraic extension of K into the algebraic closure extends to an automorphism τ˜ ∈ Aut (K). K Let ϕ˜ be such an extension of ϕ for all j = 1,...,d and let {τ ,...,τ } = Hom (E,K). j j 1 n/d K(α) Then {σ ,...,σ } = {ϕ˜ ◦τ | 1 ≤ j ≤ d,1 ≤ i ≤ n/d} 1 n j i In particular each ϕ can be extended in exactly n/d ways to a K-homomorphism ϕ˜ ◦τ : j j i E → K, 1 ≤ i ≤ n/d. This implies that χ = µn/d and also (a) and (b) follow. (cid:3) α,K α,K Corollary 1.1.12. Let K ⊆ L ⊆ M be a tower of separable field extensions of finite degree. Then S = S ◦S and N = N ◦N M/K L/K M/L M/K L/K M/L 1(1.33) of the script of the Algebra lecture 8 CHAPTER 1. COMMUTATIVE THEORY. Proof. Let m := [M : K], (cid:96) := [L : K] and n := [M : L]. Then m = (cid:96)n. Define an equivalence relation on {σ ,...,σ } = Hom (M,K) by 1 m K σ ∼ σ ⇔ (σ ) = (σ ) . j i j L i L As we have seen in the last proof each equivalence class A contains exactly n elements. j Therefore for any α ∈ M m (cid:96) (cid:88) (cid:88) (cid:88) S (α) = σ (α) = σ(α). M/K i i=1 j=1 σ∈Aj Wlog we assume that A = [σ ]. Then j j (cid:88) σ(α) = S (σ (α)) = σ (S (α)). σj(M)/σj(L) j j M/L σ∈Aj Therefore S (α) = (cid:80)(cid:96) σ (S (α)) = (S ◦S )(α). Similarly for the norm. (cid:3) M/K j=1 j M/L L/K M/L Definition 1.1.13. Let L/K be a separable extension an let B := (α ,...,α ) be a K-basis 1 n of L. (a) The Trace-Bilinear-Form S : L × L → K, S(α,β) := S (αβ) is a symmetric L/K K-bilinear form. (b) ThediscriminantofB isthedeterminantoftheGrammatrixofB, d(B) := det(S(α ,α ) ). i j i,j Remark 1.1.14. If {σ ,...,σ } = Hom (L,K) then d(B) = det((σ (α )) )2. 1 n K i j i,j Proof. S (α α ) = (cid:80)n σ (α )σ (α ) = [(σ (α ) )tr(σ (α ) )] so (S (α α )) = AtrA L/K i j k=1 k i k j k i i,k k i i,k i,j L/K i j with A = (σ (α ) ). (cid:3) k i i,k √ √ Example. If K = Q and L = Q[ d] then B := (1, d) is a K-basis of L and d(B) = √ (cid:18) (cid:19)2 1 d 2·(2d) = det √ 1 − d Theorem 1.1.15. Let L/K be a separable extension an let B := (α ,...,α ) be a K-basis of 1 n L. Then the trace bilinear form is a non-degenerate symmetric K-bilinear form. In particular d(B) (cid:54)= 0. Proof. Choose a primitive element α ∈ L, so L = K(α) and B := (1,α,...,αn−1) is another 1 K-basis of L. By the transformation rule for Gram matrices, d(B) = d(B )a2 where a ∈ K∗ 1 is the determinant of the base change matrix between B and B . So it is enough to show 1 that d(B ) (cid:54)= 0. By the remark above d(B ) = d(A)2 where 1 1   1 σ (α) σ (α)2 ... σ (α)n−1 1 1 1  1 σ (α) σ (α)2 ... σ (α)n−1  2 2 2 A = ((σ (αj)) =  . . .  i j=0,..,n−1,i=1,..,n  . . .  . . ... ... .   1 σ (α) σ (α)2 ... σ (α)n−1 n n n 1.1. THE RING OF INTEGERS 9 (cid:81) and {σ ,...,σ } = Hom (L,K). By Vandermonde det(A) = (σ (α) − σ (α)), so 1 n K i<j j i d(B ) = ((cid:81) (σ (α)−σ (α)))2 (cid:54)= 0, since the different embeddings of L into K have different 1 i<j j i values on the primitive element α. (cid:3) Definition 1.1.16. Let K be an algebraic number field and B := (α ,...,α ) be an integral 1 n basis of K (i.e. a Z-basis of the ring of integers Z ). Then the discriminant of K is K d := d(B). K More general let A = (cid:104)β ,...,β (cid:105) be a free Z-module of full rank in K. Then 1 n Z d := d((β ,...,β )) A 1 n is called the discriminant of A. Remark 1.1.17. d and d are well defined, which means that they do not dependent on K A the choice of the integral basis B. If A(cid:48) ⊆ A ⊆ K are two finitely generated Z-modules of full rank in K, then by the main theorem on finitely generated Z-modules (elementary divisor theorem) the index a := [A : A(cid:48)] := |A/A(cid:48)| < ∞ and d = a2d . A(cid:48) A √ Example. K = Q[ d], 0,1 (cid:54)= d ∈ Z square-free. Integral basis, Gram matrix, discrimi- nant. An algorithm to determine an integral basis of a number field. Definition 1.1.18. Let V ∼= Rn be an n-dimensional real vector space and Φ : V ×V → R a non-degenerate symmetric bilinear form. (a) A lattice in V is the set of all integral linear combinations of an R-basis of V. n (cid:88) L = (cid:104)B(cid:105) = { a b | a ∈ Z} Z i i i i=1 for some basis B = (b ,...,b ) of V. Any such Z-basis B of L is called a basis of L and 1 n the determinant of the Gram matrix of B with respect to Φ is called the determinant of L. (b) For a lattice L := (cid:104)B(cid:105) the set L# := {x ∈ V | Φ(x,L) ⊆ Z} is called the dual lattice Z of L (wrt Φ). (c) L is called integral (wrt Φ), if L ⊆ L#. Remark. L# isalatticeinV,thedualbasisB∗ ofanylatticebasisB ofLisalatticebasis of L#. The base change matrix between B and B∗ is the Gram matrix M (Φ) = (Φ(b ,b )) B i j of B. In particular det(M (Φ)) = [L# : L] = |L#/L| for any integral lattice L. B 10 CHAPTER 1. COMMUTATIVE THEORY. Theorem 1.1.19. Let K be an algebraic number field, O ⊆ Z a full Z-lattice in K. Then K (O,S ) is an integral lattice and K/Q O ⊆ Z ⊆ Z# ⊆ O# K K (cid:124)(cid:123)(cid:122)(cid:125) (cid:124)(cid:123)(cid:122)(cid:125) (cid:124)(cid:123)(cid:122)(cid:125) f dK f which yields an algorithm to compute Z . K Corollary. The ring of integers Z in an algebraic number field is finitely generated, so K any algebraic number field has an integral basis. 1.1.3 Dedekind domains. √ √ Example. Let K = Q[ −5]. Then Z = Z[ −5] and K √ √ 21 = 3·7 = (1+2 −5)·(1−2 −5) has no unique factorization. Note that the factors above are irreducible but not prime. √ √ Reason: The ideals 3Z = ℘ ℘(cid:48), 7Z = ℘ ℘(cid:48), (1+2 −5)Z = ℘ ℘ , and (1−2 −5)Z = K 3 3 K 7 7 K 3 7 K ℘(cid:48)℘(cid:48) are not prime ideals, where 3 7 √ √ √ √ ℘ = (3,1+2 −5), ℘(cid:48) = (3,1−2 −5), ℘ = (7,1+2 −5), ℘(cid:48) = (7,1−2 −5) 3 3 7 7 and so 21Z = ℘ ℘(cid:48)℘ ℘(cid:48) is a unique product of prime ideals. K 3 3 7 7 A ring with a unique prime ideal factorisation is called a Dedekind ring: Definition 1.1.20. A Noetherian, integrally closed, integral domain in which all non-zero prime ideals are maximal ideals is called a Dedekind domain. Example. Z[x] is not a Dedekind domain, because (x) is a prime ideal (the quotient is isomorphic to Z) but not maximal, since Z is not a field. Theorem 1.1.21. Let K be a number field. Then Z is a Dedekind domain. K Proof. Clearly Z is integrally closed and an integral domain. K WefirstshowthatZ isNoetherian, i.e. anyidealofZ isfinitelygenerated. Let0 (cid:54)= A(cid:69)Z K K K be an ideal and choose 0 (cid:54)= a ∈ A. If B := (b ,...,b ) is an integral basis of K, then 1 n aB := (ab ,...,ab ) ∈ An is also a Q-basis of K. The lattice (cid:104)aB(cid:105) ⊆ A ⊆ (cid:104)B(cid:105) = Z 1 n Z Z K has finite index in Z . Therefore also A has finite index in Z and, by the main theorem K K on finitely generated Z-modules, A is finitely generated as a Z-module and hence also as a Z -module. K The above consideration also applies to non-zero prime ideals 0 (cid:54)= ℘(cid:69)Z of Z , in particular K K any such prime ideal has finite index in Z . Therefore Z /℘ is a finite integral domain, so K K a field, which means that ℘ is a maximal ideal. (cid:3) Lemma 1.1.22. Any finite integral domain R is a field.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.