ebook img

Algebraic Groups: The Theory of Group Schemes of Finite Type over a Field PDF

660 Pages·2017·3.692 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Algebraic Groups: The Theory of Group Schemes of Finite Type over a Field

CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS 170 EditorialBoard B. BOLLOBA´S, W. FULTON, F. KIRWAN, P. SARNAK, B. SIMON, B. TOTARO ALGEBRAICGROUPS Algebraic groups play much the same role for algebraists as Lie groups play for analysts. This book is the firstcomprehensive introduction tothe theory ofalgebraic group schemes over fields that includes the structure theory of semisimple algebraic groupsandiswritteninthelanguageofmodernalgebraicgeometry. The first eight chapters study general algebraic group schemes over a field and culminate in a proof of the Barsotti–Chevalley theorem realizing every algebraic groupasanextensionofanabelianvarietybyanaffinegroup.Afterareviewofthe Tannakian philosophy, the author provides short accounts of Lie algebras and finite groupschemes.Thelaterchapterstreatreductivealgebraicgroupsoverarbitraryfields, includingtheBorel–Chevalleystructuretheory.Solvablealgebraicgroupsarestudied indetail.Prerequisiteshavebeenkepttoaminimumsothatthebookisaccessibleto non-specialistsinalgebraicgeometry. J. S. Milne is professor emeritus at the University of Michigan, Ann Arbor. His previousbooksincludeE´taleCohomologyandArithmeticDualityTheorems. CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS EditorialBoard: B.Bolloba´s,W.Fulton,F.Kirwan,P.Sarnak,B.Simon,B.Totaro AllthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfromCambridgeUniversityPress. Foracompleteserieslistingvisit:www.cambridge.org/mathematics. Alreadypublished 131 D.A.CravenThetheoryoffusionsystems 132 J.Va¨a¨na¨nenModelsandgames 133 G.Malle&D.TestermanLinearalgebraicgroupsandfinitegroupsofLietype 134 P.LiGeometricanalysis 135 F.MaggiSetsoffiniteperimeterandgeometricvariationalproblems 136 M.Brodmann&R.Y.SharpLocalcohomology(2ndEdition) 137 C.Muscalu&W.SchlagClassicalandmultilinearharmonicanalysis,I 138 C.Muscalu&W.SchlagClassicalandmultilinearharmonicanalysis,II 139 B.HelfferSpectraltheoryanditsapplications 140 R.Pemantle&M.C.WilsonAnalyticcombinatoricsinseveralvariables 141 B.Branner&N.FagellaQuasiconformalsurgeryinholomorphicdynamics 142 R.M.DudleyUniformcentrallimittheorems(2ndEdition) 143 T.LeinsterBasiccategorytheory 144 I.Arzhantsev,U.Derenthal,J.Hausen&A.LafaceCoxrings 145 M.VianaLecturesonLyapunovexponents 146 J.-H.Evertse&K.Gyo¨ryUnitequationsinDiophantinenumbertheory 147 A.PrasadRepresentationtheory 148 S.R.Garcia,J.Mashreghi&W.T.RossIntroductiontomodelspacesandtheiroperators 149 C.Godsil&K.MeagherErdo¨s–Ko–Radotheorems:Algebraicapproaches 150 P.MattilaFourieranalysisandHausdorffdimension 151 M.Viana&K.OliveiraFoundationsofergodictheory 152 V.I.Paulsen&M.RaghupathiAnintroductiontothetheoryofreproducingkernelHilbertspaces 153 R.Beals&R.WongSpecialfunctionsandorthogonalpolynomials 154 V.JurdjevicOptimalcontrolandgeometry:Integrablesystems 155 G.PisierMartingalesinBanachspaces 156 C.T.C.WallDifferentialtopology 157 J.C.Robinson,J.L.Rodrigo&W.SadowskiThethree-dimensionalNavier–Stokesequations 158 D.HuybrechtsLecturesonK3surfaces 159 H.Matsumoto&S.TaniguchiStochasticanalysis 160 A.Borodin&G.OlshanskiRepresentationsoftheinfinitesymmetricgroup 161 P.WebbFinitegrouprepresentationsforthepuremathematician 162 C.J.Bishop&Y.PeresFractalsinprobabilityandanalysis 163 A.BovierGaussianprocessesontrees 164 P.SchneiderGaloisrepresentationsand(φ,(cid:3))-modules 165 P.Gille&T.SzamuelyCentralsimplealgebrasandGaloiscohomology(2ndEdition) 166 D.Li&H.QueffelecIntroductiontoBanachspaces,I 167 D.Li&H.QueffelecIntroductiontoBanachspaces,II 168 J.Carlson,S.Mu¨ller-Stach&C.PetersPeriodmappingsandperioddomains(2ndEdition) 169 J.M.LandsbergGeometryandcomplexitytheory 170 J.S.MilneAlgebraicgroups The picture illustrates Grothendieck’s vision of a pinned reductive group: the body is a maximal torus T, the wings are the opposite BorelsubgroupsB,andthepinsrigidifythesituation.(“Demazurenous indique que, derrie`re cette terminologie [e´pinglage], il y a l’image du papillon(queluiafournieGrothendieck):lecorpsestuntoremaximal T, les ailes sont deux sous-groupes de Borel oppose´es par rapport a` T, onde´ploielepapillonene´talantlesailes,puisonfixedese´le´mentsdans les groupes additifs (des e´pingles) pour rigidifier la situation.” SGA 3, XXIII,p.177.) The background image is a Blue Morpho butterfly. Credit: LPETTET/DigitalVision Vectors/GettyImages. Algebraic Groups The Theory of Group Schemes of Finite Type over a Field J. S. MILNE UniversityofMichigan,AnnArbor UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 4843/24,2ndFloor,AnsariRoad,Daryaganj,Delhi–110002,India 79AnsonRoad,#06-04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learningandresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107167483 DOI:10.1017/9781316711736 (cid:2)c J.S.Milne2017 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2017 PrintedintheUnitedKingdombyClays,StIvesplc AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. ISBN978-1-107-16748-3Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Contents Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Conventionsandnotation . . . . . . . . . . . . . . . . . . . . . . . . 3 1 DefinitionsandBasicProperties 6 a Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 b Basicpropertiesofalgebraicgroups . . . . . . . . . . . . . . . 12 c Algebraicsubgroups . . . . . . . . . . . . . . . . . . . . . . . 18 d Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 e Kernelsandexactsequences . . . . . . . . . . . . . . . . . . . 23 f Groupactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 g Thehomomorphismtheoremforsmoothgroups . . . . . . . . . 28 h Closedsubfunctors: definitionsandstatements. . . . . . . . . . 29 i Transporters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 j Normalizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 k Centralizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 l Closedsubfunctors: proofs . . . . . . . . . . . . . . . . . . . . 35 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2 ExamplesandBasicConstructions 39 a Affinealgebraicgroups . . . . . . . . . . . . . . . . . . . . . . 39 b E´talegroupschemes . . . . . . . . . . . . . . . . . . . . . . . 44 c Anti-affinealgebraicgroups . . . . . . . . . . . . . . . . . . . 45 d Homomorphismsofalgebraicgroups. . . . . . . . . . . . . . . 46 e Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 f Semidirectproducts . . . . . . . . . . . . . . . . . . . . . . . . 50 g Thegroupofconnectedcomponents . . . . . . . . . . . . . . . 51 h Thealgebraicsubgroupgeneratedbyamap . . . . . . . . . . . 53 i Restrictionofscalars . . . . . . . . . . . . . . . . . . . . . . . 57 j Torsors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3 AffineAlgebraicGroupsandHopfAlgebras 64 a Thecomultiplicationmap . . . . . . . . . . . . . . . . . . . . . 64 viii Contents b Hopfalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 c Hopfalgebrasandalgebraicgroups . . . . . . . . . . . . . . . 66 d Hopfsubalgebras . . . . . . . . . . . . . . . . . . . . . . . . . 67 e HopfsubalgebrasofO.G/versussubgroupsofG . . . . . . . . 68 f SubgroupsofG.k/versusalgebraicsubgroupsofG . . . . . . . 68 g Affinealgebraicgroupsincharacteristiczeroaresmooth . . . . 70 h Smoothnessincharacteristicp¤0 . . . . . . . . . . . . . . . . 72 i FaithfulflatnessforHopfalgebras . . . . . . . . . . . . . . . . 73 j Thehomomorphismtheoremforaffinealgebraicgroups . . . . 74 k Formsofalgebraicgroups . . . . . . . . . . . . . . . . . . . . 76 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4 LinearRepresentationsofAlgebraicGroups 83 a Representationsandcomodules. . . . . . . . . . . . . . . . . . 83 b Stabilizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 c Representationsareunionsoffinite-dimensionalrepresentations 86 d Affinealgebraicgroupsarelinear. . . . . . . . . . . . . . . . . 86 e Constructingallfinite-dimensionalrepresentations . . . . . . . 88 f Semisimplerepresentations . . . . . . . . . . . . . . . . . . . . 90 g Charactersandeigenspaces . . . . . . . . . . . . . . . . . . . . 92 h Chevalley’stheorem. . . . . . . . . . . . . . . . . . . . . . . . 94 i Thesubspacefixedbyagroup . . . . . . . . . . . . . . . . . . 96 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5 GroupTheory;theIsomorphismTheorems 98 a Theisomorphismtheoremsforabstractgroups. . . . . . . . . . 98 b Quotientmaps . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 c Existenceofquotients . . . . . . . . . . . . . . . . . . . . . . . 102 d Monomorphismsofalgebraicgroups . . . . . . . . . . . . . . . 106 e Thehomomorphismtheorem . . . . . . . . . . . . . . . . . . . 108 f Theisomorphismtheorem . . . . . . . . . . . . . . . . . . . . 111 g Thecorrespondencetheorem . . . . . . . . . . . . . . . . . . . 112 h Theconnected-e´taleexactsequence . . . . . . . . . . . . . . . 114 i Thecategoryofcommutativealgebraicgroups . . . . . . . . . . 115 j Sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 k Theisomorphismtheoremsforfunctorstogroups . . . . . . . . 118 l Theisomorphismtheoremsforsheavesofgroups . . . . . . . . 118 m Theisomorphismtheoremsforalgebraicgroups . . . . . . . . . 119 n Somecategorytheory . . . . . . . . . . . . . . . . . . . . . . . 121 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 6 SubnormalSeries;SolvableandNilpotentAlgebraicGroups 124 a Subnormalseries . . . . . . . . . . . . . . . . . . . . . . . . . 124 b Isogenies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 c Compositionseriesforalgebraicgroups . . . . . . . . . . . . . 127 Contents ix d Thederivedgroupsandcommutatorgroups . . . . . . . . . . . 129 e Solvablealgebraicgroups . . . . . . . . . . . . . . . . . . . . . 131 f Nilpotentalgebraicgroups . . . . . . . . . . . . . . . . . . . . 133 g Existenceofalargestalgebraicsubgroupwithagivenproperty . 134 h Semisimpleandreductivegroups . . . . . . . . . . . . . . . . . 135 i Astandardexample . . . . . . . . . . . . . . . . . . . . . . . . 136 7 AlgebraicGroupsActingonSchemes 138 a Groupactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 b Thefixedsubscheme . . . . . . . . . . . . . . . . . . . . . . . 138 c Orbitsandisotropygroups . . . . . . . . . . . . . . . . . . . . 139 d Thefunctordefinedbyprojectivespace . . . . . . . . . . . . . 141 e Quotientsofaffinealgebraicgroups . . . . . . . . . . . . . . . 141 f Linearactionsonschemes . . . . . . . . . . . . . . . . . . . . 145 g Flagvarieties . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 8 TheStructureofGeneralAlgebraicGroups 148 a Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 b Normalaffinealgebraicsubgroups . . . . . . . . . . . . . . . . 149 c Pseudo-abelianvarieties . . . . . . . . . . . . . . . . . . . . . 149 d Localactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 e Anti-affinealgebraicgroupsandabelianvarieties . . . . . . . . 151 f Rosenlicht’sdecompositiontheorem. . . . . . . . . . . . . . . . 151 g Rosenlicht’sdichotomy . . . . . . . . . . . . . . . . . . . . . . 153 h TheBarsotti–Chevalleytheorem . . . . . . . . . . . . . . . . . 154 i Anti-affinegroups . . . . . . . . . . . . . . . . . . . . . . . . . 156 j Extensionsofabelianvarietiesbyaffinealgebraicgroups: asurvey159 k Homogeneousspacesarequasi-projective . . . . . . . . . . . . 160 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 9 TannakaDuality;JordanDecompositions 163 a Recoveringagroupfromitsrepresentations . . . . . . . . . . . 163 b Jordandecompositions . . . . . . . . . . . . . . . . . . . . . . 166 c Characterizingcategoriesofrepresentations . . . . . . . . . . . 171 d Categoriesofcomodulesoveracoalgebra . . . . . . . . . . . . 174 e ProofofTheorem9.24 . . . . . . . . . . . . . . . . . . . . . . 178 f Tannakiancategories . . . . . . . . . . . . . . . . . . . . . . . 183 g PropertiesofG versusthoseofRep.G/ . . . . . . . . . . . . . 184 10 TheLieAlgebraofanAlgebraicGroup 186 a Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 b TheLiealgebraofanalgebraicgroup . . . . . . . . . . . . . . 188 c BasicpropertiesoftheLiealgebra . . . . . . . . . . . . . . . . 190 d Theadjointrepresentation;definitionofthebracket . . . . . . . 191 x Contents e DescriptionoftheLiealgebraintermsofderivations . . . . . . 194 f Stabilizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 g Centres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 h Centralizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 i AnexampleofChevalley . . . . . . . . . . . . . . . . . . . . . 198 j Theuniversalenvelopingalgebra . . . . . . . . . . . . . . . . . 199 k Theuniversalenvelopingp-algebra . . . . . . . . . . . . . . . 204 l Thealgebraofdistributions(hyperalgebra)ofanalgebraicgroup 207 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 11 FiniteGroupSchemes 209 a Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 b Locallyfreefinitegroupschemesoverabasering . . . . . . . . 211 c Cartierduality . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 d Finitegroupschemesoforderp . . . . . . . . . . . . . . . . . 215 e DerivationsofHopfalgebras . . . . . . . . . . . . . . . . . . . 216 f Structureoftheunderlyingschemeofafinitegroupscheme . . 218 g Finitegroupschemesofordernarekilledbyn . . . . . . . . . 220 h Finitegroupschemesofheightatmostone . . . . . . . . . . . 222 i TheVerschiebungmorphism . . . . . . . . . . . . . . . . . . . 224 j TheWittschemesW . . . . . . . . . . . . . . . . . . . . . . . 226 n k Commutativegroupschemesoveraperfectfield . . . . . . . . . 227 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 12 GroupsofMultiplicativeType;LinearlyReductiveGroups 230 a Thecharactersofanalgebraicgroup . . . . . . . . . . . . . . . 230 b ThealgebraicgroupD.M/ . . . . . . . . . . . . . . . . . . . . 230 c Diagonalizablegroups . . . . . . . . . . . . . . . . . . . . . . 233 d Diagonalizablerepresentations . . . . . . . . . . . . . . . . . . 234 e Tori . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 f Groupsofmultiplicativetype . . . . . . . . . . . . . . . . . . . 236 g Classificationofgroupsofmultiplicativetype . . . . . . . . . . 239 h Representationsofagroupofmultiplicativetype . . . . . . . . 241 i Densityandrigidity . . . . . . . . . . . . . . . . . . . . . . . . 242 j Centraltoriasalmost-factors . . . . . . . . . . . . . . . . . . . 245 k Mapstotori . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 l Linearlyreductivegroups . . . . . . . . . . . . . . . . . . . . . 248 m Unirationality . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 13 ToriActingonSchemes 254 a Thesmoothnessofthefixedsubscheme . . . . . . . . . . . . . 254 b Limitsinschemes . . . . . . . . . . . . . . . . . . . . . . . . . 258 c Theconcentratorschemeintheaffinecase . . . . . . . . . . . . 260 d Limitsinalgebraicgroups . . . . . . . . . . . . . . . . . . . . 263

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.