Algebraic Discrete Morse Theory and Applications to Commutative Algebra (Algebraische Diskrete Morse-Theorie und Anwendungen in der Kommutativen Algebra) Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) vorgelegt dem Fachbereich Mathematik und Informatik der Philipps-Universita(cid:127)t Marburg von Michael Jo(cid:127)llenbeck aus Marburg/Lahn Marburg/Lahn, Januar 2005 Vom Fachbereich Mathematik und Informatik der Philipps-Universita(cid:127)t Marburg als Dissertation angenommen am: 25.04.2005 Erstgutachter: Professor Dr. Volkmar Welker Zweitgutachter: Professor Dr. Tim Ro(cid:127)mer Tag der mu(cid:127)ndlichen Pru(cid:127)fung: 09.05.2005 Contents Part 1. Algebraic Discrete Morse Theory and Applications to Commutative Algebra Chapter 1. Introduction 5 Chapter 2. Basics from Commutative Algebra 11 x1. Free Resolutions of R-Modules 12 1.1. Cellular Resolutions 13 1.2. Hilbert and Poincar(cid:19)e-Betti Series 14 x2. Examples for Chain Complexes in Commutative Algebra 15 2.1. Taylor and Scarf Complex 15 2.2. Poset Resolution for a Monomial Ordered Family 16 2.3. Koszul Complex 17 2.4. Bar Resolution 18 2.5. Acyclic Hochschild Complex 19 x3. Eagon Complex and the Golod Property 21 3.1. The Eagon Resolution 21 3.2. The Massey Operations and the Golod Property 23 Chapter 3. Algebraic Discrete Morse Theory 29 x1. Algebraic Discrete Morse Theory 29 x2. Proof of Theorem 1.2 32 x3. Normalized Bar and Hochschild Resolution via ADMT 41 Chapter 4. Free Resolutions of Monomial Ideals 43 x1. Algebraic Discrete Morse Theory on the Taylor Resolution 43 1.1. Standard Matching on the Taylor Resolution 43 1.2. Resolutions of Monomial Ideals Generated in Degree Two 45 1.3. Resolution of Stanley Reisner Ideals of a Partially Ordered Set 46 1.4. The gcd-Condition 49 x2. Algebraic Discrete Morse Theory for the Poset Resolution 50 2.1. ADMT for the Poset Resolution 51 2.2. What is a \good" underlying partially ordered set P ? 59 i ii Contents x3. Minimal Resolution and Regularity of Principal (p-)Borel Fixed Ideals 62 3.1. Cellular Minimal Resolution for Principal Borel Fixed Ideals 62 3.2. Cellular Minimal Resolution for a Class of p-Borel Fixed Ideals 65 Chapter 5. Free Resolution of the Residue Class Field k 81 x1. Resolution of the Residue Field in the Commutative Case 82 1.1. An Anick Resolution for the Commutative Polynomial Ring 84 1.2. Two Special Cases 88 x2. Resolution of the Residue Field in the Non-Commutative Case 90 2.1. The Anick Resolution 92 2.2. The Poincar(cid:19)e-Betti Series of k 93 2.3. Examples 94 x3. Application to the Acyclic Hochschild Complex 96 Chapter 6. The Multigraded Hilbert and Poincar(cid:19)e-Betti Series and the Golod Property 101 x1. The Multigraded Hilbert and Poincar(cid:19)e-Betti Series 103 x2. The Homology of the Koszul Complex KA 106 x3. Hilbert and Poincar(cid:19)e-Betti Series of the Algebra A = k[(cid:1)] 108 x4. Proof of Conjecture 1.2 for Several Classes of Algebras A 113 4.1. Proof for Algebras A for which H (KA) is an M-ring 113 (cid:15) 4.2. Proof for Koszul Algebras 115 4.3. Idea for a Proof in the General Case 121 x5. Applications to the Golod Property of Monomial Rings 125 Part 2. Two Problems in Algebraic Combinatorics Chapter 1. Introduction 131 Chapter 2. Homology of Nilpotent Lie Algebras of Finite Type 133 x1. General Theory 134 1.1. Root Space Decomposition 135 1.2. Root Systems and Re(cid:13)ection Groups 136 1.3. Homology of Lie Algebras 138 1.4. Conjectures and Open Questions 140 x2. New Invariance Theorem for Nilpotent Lie Algebras of Finite Type141 x3. Applications to Lie Algebras of Root Systems 146 3.1. Homology of Lie Algebras Associated to A 148 n 3.2. Homology of Lie Algebras Associated to other Root Systems 151 Chapter 3. The Neggers-Stanley Conjecture 153 x1. The Poset Conjecture 153 x2. The Naturally Labeled Case for Graded Posets 156 2.1. Proof of Theorem 2.6 157 x3. The Naturally Labeled Case for General Posets 160 3.1. W-Polynomial in Graph Theory 160 3.2. Unimodality for Naturally Labeled Posets 164 Contents iii Bibliography 171 Part 3. Appendix Appendix A. German Abstract (Deutsche Zusammenfassung) 175 x1. Struktur der Arbeit 175 x2. Algebraische Diskrete Morse-Theorie und Anwendungen 175 2.1. Einfu(cid:127)hrung 175 2.2. Bisherige Lo(cid:127)sungsansa(cid:127)tze 176 2.3. Die Algebraische Diskrete Morse-Theorie 177 2.4. Anwendungen in der Kommutativen Algebra 180 2.5. Struktur des ersten Teils 186 x3. Zwei Probleme aus der Algebraischen Kombinatorik 187 3.1. Einfu(cid:127)hrung 187 3.2. Homologie von nilpotenten Lie-Algebren endlichen Typs 187 3.3. Neggers-Stanley-Vermutung 191 Appendix B. 195 x1. Danksagung / Acknowledgments 195 x2. Erkla(cid:127)rung 197 x3. Curriculum Vitae 199 ThefollowingtextisaPhDthesisinAlgebraicCombinatorics. Itconsistsof two partsandanappendix. Inthe (cid:12)rstpart, "Algebraic Discrete MorseTheory and Applications to Commutative Algebra", we generalize Forman’s Discrete Morsetheoryandgiveseveralapplicationstoproblemsincommutative algebra. In the second part we present results on two related problems in Algebraic Combinatorics, namely "Homology of Nilpotent Lie Algebras of Finite Type" and the "Neggers-Stanley Conjecture". The appendix consists of the German abstract, acknowledgments, curricu- lum vitae, and the declaration of authorship. Part 1 Algebraic Discrete Morse Theory and Applications to Commutative Algebra