ebook img

Algebraic Combinatorics: Walks, Trees, Tableaux, and More PDF

224 Pages·2013·3.891 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Algebraic Combinatorics: Walks, Trees, Tableaux, and More

Undergraduate Texts in Mathematics Undergraduate Texts in Mathematics SeriesEditors: SheldonAxler SanFranciscoStateUniversity,SanFrancisco,CA,USA KennethRibet UniversityofCalifornia,Berkeley,CA,USA AdvisoryBoard: ColinAdams,WilliamsCollege,Williamstown,MA,USA AlejandroAdem,UniversityofBritishColumbia,Vancouver,BC,Canada RuthCharney,BrandeisUniversity,Waltham,MA,USA IreneM.Gamba,TheUniversityofTexasatAustin,Austin,TX,USA RogerE.Howe,YaleUniversity,NewHaven,CT,USA DavidJerison,MassachusettsInstituteofTechnology,Cambridge,MA,USA JeffreyC.Lagarias,UniversityofMichigan,AnnArbor,MI,USA JillPipher,BrownUniversity,Providence,RI,USA FadilSantosa,UniversityofMinnesota,Minneapolis,MN,USA AmieWilkinson,UniversityofChicago,Chicago,IL,USA Undergraduate Texts in Mathematics are generally aimed at third- and fourth- year undergraduate mathematics students at North American universities. These texts strive to provide students and teachers with new perspectives and novel approaches.Thebooksincludemotivationthatguidesthereadertoanappreciation ofinterrelationsamongdifferentaspectsofthesubject.Theyfeatureexamplesthat illustratekeyconceptsaswellasexercisesthatstrengthenunderstanding. Forfurthervolumes: http://www.springer.com/series/666 Richard P. Stanley Algebraic Combinatorics Walks, Trees, Tableaux, and More 123 RichardP.Stanley DepartmentofMathematics MassachusettsInstituteofTechnology Cambridge,MA,USA ISSN0172-6056 ISBN978-1-4614-6997-1 ISBN978-1-4614-6998-8(eBook) DOI10.1007/978-1-4614-6998-8 SpringerNewYorkHeidelbergDordrechtLondon LibraryofCongressControlNumber:2013935529 MathematicsSubjectClassification(2010):05Exx ©SpringerScience+BusinessMediaNewYork2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) to Kennethand Sharon Preface Thisbookis intendedprimarilyas a one-semesterundergraduatetextfora course inalgebraiccombinatorics.Themainprerequisitesareabasicknowledgeoflinear algebra(eigenvalues,eigenvectors,etc.) overa field, existenceof finite fields, and somerudimentaryunderstandingofgrouptheory.Theone exceptionis Sect.12.6, whichinvolvesfiniteextensionsoftherationalsincludingalittleGaloistheory.Prior knowledgeofcombinatoricsisnotessentialbutwillbehelpful. Why do I write an undergraduate textbook on algebraic combinatorics? One obvious reason is simply to gather some material that I find very interesting and hope that students will agree. A second reason concernsstudents who have taken anintroductoryalgebracourseandwanttoknowwhatcanbedonewiththeirnew- foundknowledge.Undergraduatecoursesthatrequireabasicknowledgeofalgebra are typically either advanced algebra courses or abstract courses on subjects like algebraictopologyandalgebraicgeometry.Algebraiccombinatoricsoffersabyway off the traditional algebraic highway, one that is more intuitive and more easily accessible. Algebraic combinatorics is a huge subject, so some selection process was necessary to obtain the present text. The main results, such as the weak Erdo˝s– Moser theorem and the enumerationof de Bruijn sequences,have the feature that theirstatementdoesnotinvolveanyalgebra.Suchresultsaregoodadvertisements for the unifying power of algebra and for the unity of mathematics as a whole. All but the last chapter are vaguely connected to walks on graphs and linear transformationsrelatedtothem.Thefinalchapterisahodgepodgeofsomeunrelated elegant applications of algebra to combinatorics. The sections of this chapter are independent of each other and the rest of the text. There are also three chapter appendiceson purely enumerative aspects of combinatoricsrelated to the chapter material:theRSKalgorithm,planepartitions,andtheenumerationoflabelledtrees. Almost all the material covered here can serve as a gateway to much additional algebraic combinatorics. We hope in fact that this book will serve exactly this purpose, that is, to inspire its readers to delve more deeply into the fascinating interplaybetweenalgebraandcombinatorics. vii viii Preface Many persons have contributed to the writing of this book, but special thanks should go to Christine Bessenrodt and Sergey Fomin for their careful reading of portionsofearliermanuscripts. Cambridge,MA RichardP.Stanley Contents Preface............................................................................. vii BasicNotation.................................................................... xi 1 WalksinGraphs............................................................ 1 2 CubesandtheRadonTransform......................................... 11 3 RandomWalks.............................................................. 21 4 TheSpernerProperty...................................................... 31 5 GroupActionsonBooleanAlgebras ..................................... 43 6 YoungDiagramsandq-BinomialCoefficients .......................... 57 7 EnumerationUnderGroupAction....................................... 75 8 AGlimpseofYoungTableaux............................................. 103 9 TheMatrix-TreeTheorem................................................. 135 10 EulerianDigraphsandOrientedTrees................................... 151 11 Cycles,Bonds,andElectricalNetworks.................................. 163 11.1 TheCycleSpaceandBondSpace................................... 163 11.2 BasesfortheCycleSpaceandBondSpace......................... 168 11.3 ElectricalNetworks .................................................. 172 11.4 PlanarGraphs(Sketch)............................................... 178 11.5 SquaringtheSquare.................................................. 180 12 MiscellaneousGemsofAlgebraicCombinatorics ...................... 187 12.1 The100Prisoners.................................................... 187 12.2 Oddtown.............................................................. 189 12.3 CompleteBipartitePartitionsofK ................................. 190 n 12.4 TheNonuniformFisherInequality.................................. 191 12.5 OddNeighborhoodCovers .......................................... 193 ix x Contents 12.6 CirculantHadamardMatrices ....................................... 194 12.7 P-RecursiveFunctions............................................... 200 HintsforSomeExercises........................................................ 209 Bibliography...................................................................... 213 Index............................................................................... 219

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.