ebook img

Algebraic and number theoretic computing : advances and applications in VLSI signal processing PDF

209 Pages·1991·7.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Algebraic and number theoretic computing : advances and applications in VLSI signal processing

ALGEBRAICANDNUMBERTHEORETICCOMPUTING:ADVANCESAND APPLICATIONSINVLSISIGNALPROCESSING By GLENNS.ZELNIKER ADISSERTATIONPRESENTEDTOTHEGRADUATESCHOOLOFTHE UNIVERSITYOFFLORIDAINPARTIALFULFILLMENTOFTHE REQUIREMENTSFORTHEDEGREEOFDOCTOROFPHILOSOPHY UNIVERSITYOFFLORIDA 1991 ACKNOWLEDGMENTS First,Iwouldliketothankmyadvisorandcommitteechair,Dr. FredTaylor. Underhisdirection,Iwasgiventhefreedomandautonomytopursuewhateverareas ofresearchIfoundinteresting. Healsoprovidedmewithfinancialsupport,showed methewayintheacademicworld,andtaughtmethevirtuesofpracticality. IamindebtedtoDr. R.E.KalmanforhistwoyearsofsupportattheCenterfor MathematicalSystemTheory. Iwouldalsoliketothankmycommitteemembers. Dr. H.Lam,Dr. K.Sigmon,Dr. J.C.Principe,andDr. D.Wilson. Specialthanks gotoDr. Principeformanystimulatingconversationsaboutspectralestimationand adaptivefilteringandtoDr. WilsonandDr. Sigmonwhoinstilledinmealonging tobeamathematician. MonicaMurphyatTheAthenaGroupdeservesspecialmentionforfinancingmuch ofthelaterworkinthisdissertation. Mygirlfriend,Patricia,hasmadethispastyearoneofincrediblegrowth,both intellectualandpersonal. ToherIamgratefulforhercompanionship,support,and allofthewonderfulthingswehavedonetogether. Finally,but most importantly, Imust thank myfamily. They havegivenme constantsupport,love,andguidance. Withoutthem,thisworkwouldnothavebeen possible. 11 TABLEOFCONTENTS ACKNOWLEDGMENTS ii LISTOFFIGURES vii ABSTRACT viii CHAPTERS 1 INTRODUCTION 1 1.1 HistoryofResidueNumberSystems 3 1.2 LiteratureSurvey 8 1.3 ResidueNumberSystemsinDSP 15 1.4 TheNeedforanAlternativeTechnology 18 1.5 OrganizationofDissertation 24 2 MATHEMATICALPRELIMINARIES 29 2.1 UniversalAlgebras 29 2.1.1 AlgebraicSystems 29 2.1.2 ComputationbyHomomorphicImages 32 2.2 TheChineseRemainderTheorem 33 2.2.1 TheIntegerCRT 35 2.2.2 ThePolynomialCRT 36 2.3 FiniteFieldTheory 38 2.4 AssociativeAlgebras 42 3 THEINTEGERRNS 44 3.1 Introduction 44 iii 3.2 SignedRNS 47 3.3 AnRNSSystem 47 3.3.1 RNSInputConversion 48 3.3.2 TheRNSComputationalUnit 49 3.3.3 OutputConversion 54 3.3.4 EfficientCRTimplementation 54 4 THEQUADRATICRNS 67 4.1 MultipleModulusQRNS 70 4.2 AQRNSSystem 71 4.2.1 QRNSInputConversion 72 4.2.2 TheQRNSComputationalUnit 75 4.2.3 OutputConversion 76 4.2.4 LogarithmicFiniteFieldAddition 78 5 THERNSANDDIGITALFILTERING 84 5.1 DigitalFiltering 84 5.2 TheRNSFIR 86 5.3 AnRNSAdaptiveTransversalFilter 92 6 THEPOLYNOMIALRESIDUENUMBERSYSTEM 95 6.1 Introduction 95 6.2 PRNSForwardandInverseMappings 97 6.3 TheRing{{Zpf)[x\ 102 6.4 DynamicRangeExtension 103 6.5 ThePRNSFFT 106 6.6 2-DCyclicConvolution Ill 6.7 ChineseRemainderTheoremOverR[x,y] 112 6.8 The2-DRaderAlgorithm 118 7 COMPUTATIONALCOMPLEXITY 121 8 ALGEBRAICINTEGERRESIDUENUMBERSYSTEM(AIRNS) .... 126 IV 9 DISTRIBUTEDARITHMETICIMPLEMENTATIONOFFFTs 134 9.1 TheGood-ThomeisFFT 134 9.2 TheRaderPrimeAlgorithm 136 9.3 DistributedArithmetic 137 9.4 TheDistributedArithmeticSmallFFT 139 10 THEFFTARRAYPROCESSOR 143 10.1 Introduction 143 10.2 TheRadix-8FastFourierTransform 145 10.2.1 Introduction 145 10.2.2 EfficientMemoryAddressingforParallelComputationofthe Radix-8FFT 149 10.2.3 DoublingFFT ^• 151 10.3 EfficientCRTImplementation 152 10.4 TheFFTArrayProcessor 153 10.4.1 Introduction 153 10.4.2 OverviewoftheFFTAP 155 10.4.3 InputConversionSubsystem 156 10.4.4 TheRadix-8Processor 158 10.4.5 QRNSRadix-8Processor 161 10.4.6 ScaledCRTsubsystem 166 10.4.7 FFTAPintheCascadeMode 168 10.4.8 FFTAPMemorySubsystem 169 10.5 VLSILayoutandTimingAnalysis 174 10.5.1 InputConversionChip 174 10.5.2 QRNSRadix-8Processor 175 10.5.3 ScaledCRTChip 175 10.6 NumericalSimulationoftheFFTAP 181 11 SUIMMARYANDCONCLUSIONS 186 REFERENCES 189 BIOGRAPHICALSKETCH 198 V LISTOFFIGURES 3.1 ThebasiccomponentsofanRNSsystem 48 3.2 RNSforwardconversionelement 50 3.3 Mod-padderarchitecture 55 3.4 SimplifiedscalingCRTengine(p=2^®) 60 3.5 BlockdiagramofDA-CRT 65 4.1 QRNSforwardconversionelement 74 4.2 QRNSmultiplierunitusingindexaddition 76 4.3 ScalingQRNSCRTengine 79 4.4 LogarithmicZp-adders 83 5.1 TheRNSFIR 87 5.2 Multiplierlessmultiply/accumulateunit 90 5.3 VLSIfloorplanforFIRarray 91 5.4 FinitefieldLMStap-weightupdatecell 94 6.1 Semi-systolicarraysforPRNSforwardandinversemappings.... 105 6.2 BlockdiagramofPRNSDFTengine 110 8.1 Thesets (top)and (bottom) 129 9.1 DistributedarithmeticFFTengine 142 10.1 ScaledCRTengineforQRNSoutputconversion 154 10.2 BlockdiagramofFFTAP 157 10.3 QRNSForwardConversionChip 159 10.4 Conventionalradix-8processor 162 10.5 Eight-pointradix-2decimation-in-timeFFT 164 10.6 QRNSradix-2butterfly 165 10.7 QRNSradix-8processor 167 VI 10.8 CubicmemorymoduleforFFTAP 173 10.9 TiminganalysisofQRNSinputconversionchip 176 10.10 Radix-8andradix-2enginetiminganalysis 177 10.11 TiminganalysisofscaledCRTchip 179 10.12 TiminganalysisofFFTAPforasingleFFTstage 180 Vll AbstractofDissertationPresentedtotheGraduateSchooloftheUniversityof FloridainPartialFulfillmentoftheRequirementsoftheDegreeofDoctorof Philosophy ALGEBRAICANDNUMBERTHEORETICCOMPUTING:ADVANCESAND APPLICATIONSINVLSISIGNALPROCESSING By GlennS.Zelniker May1991 Chairman: Dr. FredJ.Taylor MajorDepartment: ElectricalEngineering Digitalsignalprocessing(DSP)isafieldwhichhasbenefitedfromadvancesin devicetechnologyandintegration. Asdevicesareapproachingtheirlimitsinterms ofsizeandspeed,theneedforincreasedthroughputstillremains.Itseemslikelythat thenecessarybreakthroughswillbeatthearithmeticandalgorithmiclevels.Wewill showhowthecomputationalbottleneckcanbefreedbyusinginnovationsfromthe areasofalgebraicandnumbertheoreticcomputing. Theseinnovationsfacilitatethe developmentoffastalgorithmsandthedesignofnewclassesofarithmeticproces- sorswhicharecapableofachievingunprecedentedthroughputinalimitedsizewith limitedpowerdissipation. viii Themajorsub-fieldofalgebraicandnumber-theoreticcomputingwewilldiscuss istheresiduenumbersystem(RNS).TheRNSisasystemforcomputerarithmetic whichisbasedontheprincipleofcomputationbyhomomorphicimages(CHI).The RNShasbeenshowntobeoptimalinbothsizeandspeedandpossessessomead- ditionalpropertiessuchasmodularityandfault tolerancewhichmakeitanideal candidateforVLSIsignalprocessingimplementations. Wewillalsopresentsome otherCHIschemesforhigh-speedsignalprocessingwhicharevariantsoftheRNS andareeasilyimplementedinVLSI. This dissertation will provide the mathematical foundations of algebraic and number-theoreticcomputingand showhow the RNS and its variantsfit intothe generaltheory. WealsoprovideanewinterpretationoftheChineseremainderthe- oremwhichyieldsnewinsight as tohowit providesadecreasein computational complexity. Finally,wewillgivegeneralguidelinesfortheVLSIrealizationofRNSandother CHIhardware. Asaconcreteexample,wewilldemonstratethedesignofanRNS VLSIarrayprocessorforthecomputationofultrahigh-speedfastFouriertransforms (FFTs).Thisprocessorservesasamotivationforthetheoryandpointsouttheshort- comingsofconventionaltechnology. Itwillbeseenthattheprocessorisunmatched intermsofsize,throughput,andpowerdissipationandillustratestheimpactthatal- gebraicandnumber-theoreticcomputingcanhaveindesigningextremelydemanding systemsfordigitalsignalprocessing. IX CHAPTER1 INTRODUCTION Oneoftheprincipaladvantagesandapplicationsofthemoderndigitalcomputer isnumericdataprocessing. Highnumericdataraterequirementsarefoundinmany technicalareassuchassignalandimageprocessing,communicationsandradar,and artificialneuralnetworks. Theassumedperformancemetricinthisfieldhasbeen arithmeticspeedmeasuredinMIPsorMFLOPs. However,thereareotherfactors whichalsomustbeconsideredindigitalapplications. First,manydigitalprocessors aredesignedtooperateinasmallvolumeandconsumelittlepower.Secondly,some ofthesedigitalarithmeticprocessorswilloperateunattendedoverlongperiodsof timeandmustthereforecarrywiththemthemeansofrecoveringfromcomponent failures. Alldigitaltechnologiesbringwiththemtheirownagendaofspeed,size,power, andfault-tolerancetrade-offs. Thisdissertationwilladdresssomeoftherecentthe- oreticalandtechnologicaladvanceswhichhaveledtothedevelopmentofpowerful newclassesofnumericprocessors. Oneparticularsub-areaofalgebraiccomputing willbetreatedindepth: theresiduenumbersystem(RNS)anditsmanyvariants [67]. ItwillbeshownthattheRNSpossessesauniqueblendofspeed,size,power consumption,faulttolerance,andarithmeticefficiency. TheuseoftheRNSwillbemotivatedbythedesignofamachinefortheultra high-speedcomputationoffastFourierTransforms,whichisaproblemofsignificant 1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.