Alexey L. Gorodentsev Algebra II Textbook for Students of Mathematics Algebra II Alexey L. Gorodentsev Algebra II Textbook for Students of Mathematics 123 AlexeyL.Gorodentsev FacultyofMathematics NationalResearchUniversity “HigherSchoolofEconomics” Moscow,Russia OriginallypublishedinRussianas“Algebra.Uchebnikdlyastudentov-matematikov.Chast’ 2”,©MCCME2015 ISBN978-3-319-50852-8 ISBN978-3-319-50853-5 (eBook) DOI10.1007/978-3-319-50853-5 LibraryofCongressControlNumber:2017930683 MathematicsSubjectClassification(2010):11.01,12.01,13.01,14.01,15.01,16.01,18.01,20.01 ©SpringerInternationalPublishingAG2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Thisisthesecondpartofa2-yearcourseofabstractalgebraforstudentsbeginning a professional study of higher mathematics.1 This textbook is based on courses givenattheIndependentUniversityofMoscowandattheFacultyofMathematics at the NationalResearch University Higher Schoolof Economics.In particular,it containsalargenumberofexercisesthatwerediscussedinclass,someofwhichare providedwithcommentaryandhints,aswellasproblemsforindependentsolution thatwereassignedashomework.Workingouttheexercisesisofcrucialimportance inunderstandingthesubjectmatterofthisbook. Moscow,Russia AlexeyL.Gorodentsev 1Throughoutthisbook,thefirstvolumewillbereferredtoasAlgebraI. v Contents 1 TensorProducts............................................................. 1 1.1 MultilinearMaps..................................................... 1 1.1.1 MultilinearMapsBetweenFreeModules................. 1 1.1.2 UniversalMultilinearMap................................. 3 1.2 TensorProductofModules.......................................... 4 1.2.1 ExistenceofTensorProduct ............................... 5 1.2.2 LinearMapsasTensors .................................... 7 1.2.3 TensorProductsofAbelianGroups ....................... 9 1.3 Commutativity,Associativity,andDistributivityIsomorphisms... 10 1.4 TensorProductofLinearMaps...................................... 13 1.5 TensorProductofModulesPresentedbyGenerators andRelations......................................................... 15 ProblemsforIndependentSolutiontoChapter1........................... 17 2 TensorAlgebras............................................................. 21 2.1 FreeAssociativeAlgebraofaVectorSpace........................ 21 2.2 Contractions.......................................................... 22 2.2.1 CompleteContraction...................................... 22 2.2.2 PartialContractions......................................... 23 2.2.3 LinearSupportandRankofaTensor...................... 25 2.3 QuotientAlgebrasofaTensorAlgebra ............................. 26 2.3.1 SymmetricAlgebraofaVectorSpace..................... 26 2.3.2 SymmetricMultilinearMaps .............................. 27 2.3.3 TheExteriorAlgebraofaVectorSpace................... 29 2.3.4 AlternatingMultilinearMaps.............................. 30 2.4 SymmetricandAlternatingTensors................................. 31 2.4.1 SymmetrizationandAlternation........................... 32 2.4.2 StandardBases.............................................. 33 2.5 PolarizationofPolynomials ......................................... 35 2.5.1 EvaluationofPolynomialsonVectors..................... 36 2.5.2 CombinatorialFormulaforCompletePolarization....... 37 vii viii Contents 2.5.3 Duality ...................................................... 38 2.5.4 DerivativeofaPolynomialAlongaVector ............... 38 2.5.5 PolarsandTangentsofProjectiveHypersurfaces......... 40 2.5.6 LinearSupportofaHomogeneousPolynomial........... 43 2.6 PolarizationofGrassmannianPolynomials......................... 45 2.6.1 Duality ...................................................... 45 2.6.2 PartialDerivativesinanExteriorAlgebra................. 46 2.6.3 Linear Support of a Homogeneous GrassmannianPolynomial ................................. 47 2.6.4 GrassmannianVarietiesandthePlückerEmbedding..... 49 2.6.5 TheGrassmannianasanOrbitSpace...................... 49 ProblemsforIndependentSolutiontoChapter2........................... 51 3 SymmetricFunctions....................................................... 57 3.1 SymmetricandSignAlternatingPolynomials...................... 57 3.2 ElementarySymmetricPolynomials................................ 60 3.3 CompleteSymmetricPolynomials.................................. 61 3.4 Newton’sSumsofPowers........................................... 62 3.4.1 GeneratingFunctionforthep ............................. 62 k 3.4.2 Transitionfrome andh top ............................. 63 k k k 3.5 Giambelli’sFormula ................................................. 65 3.6 Pieri’sFormula ....................................................... 67 3.7 TheRingofSymmetricFunctions .................................. 69 ProblemsforIndependentSolutiontoChapter3........................... 71 4 CalculusofArrays,Tableaux,andDiagrams ........................... 75 4.1 Arrays................................................................. 75 4.1.1 NotationandTerminology ................................. 75 4.1.2 VerticalOperations......................................... 76 4.1.3 CommutationLemma ...................................... 77 4.2 Condensing........................................................... 79 4.2.1 CondensedArrays.......................................... 79 4.2.2 BidenseArraysandYoungDiagrams ..................... 80 4.2.3 YoungTableaux............................................. 81 4.2.4 YamanouchiWords......................................... 82 4.2.5 FiberProductTheorem..................................... 83 4.3 ActionoftheSymmetricGrouponDU-Sets ....................... 86 4.3.1 DU-SetsandDU-Orbits.................................... 86 4.3.2 ActionofS DAut.J/..................................... 86 m 4.4 CombinatorialSchurPolynomials................................... 88 4.5 TheLittlewood–RichardsonRule ................................... 91 4.5.1 TheJacobi–TrudiIdentity.................................. 93 4.5.2 Transitionfrome(cid:2)andh(cid:2)tos(cid:2) ............................ 93 4.6 TheInnerProductonƒ.............................................. 95 ProblemsforIndependentSolutiontoChapter4........................... 96 Contents ix 5 BasicNotionsofRepresentationTheory................................. 99 5.1 RepresentationsofaSetofOperators............................... 99 5.1.1 AssociativeEnvelope....................................... 99 5.1.2 Decomposabilityand(Semi)/Simplicity .................. 100 5.1.3 HomomorphismsofRepresentations...................... 103 5.2 RepresentationsofAssociativeAlgebras ........................... 104 5.2.1 DoubleCentralizerTheorem............................... 104 5.2.2 Digression:ModulesOverNoncommutativeRings ...... 106 5.3 IsotypicComponents................................................. 107 5.4 RepresentationsofGroups........................................... 109 5.4.1 DirectSumsandTensorConstructions.................... 109 5.4.2 RepresentationsofFiniteAbelianGroups................. 111 5.4.3 ReynoldsOperator.......................................... 113 5.5 GroupAlgebras....................................................... 114 5.5.1 CenterofaGroupAlgebra................................. 115 5.5.2 IsotypicDecompositionofaFiniteGroupAlgebra....... 115 5.6 SchurRepresentationsofGeneralLinearGroups .................. 121 5.6.1 ActionofGL.V/(cid:2)S onV˝n ............................. 122 n 5.6.2 TheSchur–WeylCorrespondence ......................... 124 ProblemsforIndependentSolutiontoChapter5........................... 124 6 RepresentationsofFiniteGroupsinGreaterDetail.................... 131 6.1 OrthogonalDecompositionofaGroupAlgebra.................... 131 6.1.1 InvariantScalarProductandPlancherel’sFormula....... 131 6.1.2 IrreducibleIdempotents.................................... 133 6.2 Characters............................................................. 134 6.2.1 Definition,Properties,andExamplesofComputation.... 134 6.2.2 TheFourierTransform ..................................... 137 6.2.3 RingofRepresentations.................................... 140 6.3 InducedandCoinducedRepresentations............................ 141 6.3.1 Restricted and InducedModules Over AssociativeAlgebras....................................... 141 6.3.2 InducedRepresentationsofGroups........................ 142 6.3.3 TheStructureofInducedRepresentations................. 143 6.3.4 CoinducedRepresentations ................................ 146 ProblemsforIndependentSolutiontoChapter6........................... 148 7 RepresentationsofSymmetricGroups................................... 151 7.1 ActionofS onFilledYoungDiagrams............................. 151 n 7.1.1 RowandColumnSubgroupsAssociatedwith aFilling ..................................................... 151 7.1.2 YoungSymmetrizerss Dr (cid:3)c ......................... 153 T T T 7.1.3 YoungSymmetrizerss0 Dc (cid:3)r ......................... 155 T T T 7.2 ModulesofTabloids ................................................. 157 x Contents 7.3 SpechtModules ...................................................... 159 7.3.1 DescriptionandIrreducibility.............................. 159 7.3.2 StandardBasisNumberedbyYoungTableaux............ 160 7.4 RepresentationRingofSymmetricGroups......................... 161 7.4.1 Littlewood–RichardsonProduct ........................... 162 7.4.2 ScalarProducton<........................................ 163 7.4.3 TheIsometricIsomorphism<⥲ƒ....................... 164 7.4.4 DimensionsofIrreducibleRepresentations............... 168 ProblemsforIndependentSolutiontoChapter7........................... 170 8 sl2-Modules ................................................................. 173 8.1 LieAlgebras.......................................................... 173 8.1.1 UniversalEnvelopingAlgebra............................. 173 8.1.2 RepresentationsofLieAlgebras........................... 174 8.2 Finite-DimensionalSimplesl2-Modules............................ 176 8.3 SemisimplicityofFinite-Dimensionalsl2-Modules................ 179 ProblemsforIndependentSolutiontoChapter8........................... 183 9 CategoriesandFunctors................................................... 187 9.1 Categories............................................................. 187 9.1.1 ObjectsandMorphisms.................................... 187 9.1.2 Mono-,Epi-,andIsomorphisms........................... 189 9.1.3 ReversingofArrows........................................ 190 9.2 Functors............................................................... 191 9.2.1 CovariantFunctors ......................................... 191 9.2.2 Presheaves .................................................. 192 9.2.3 TheFunctorsHom.......................................... 195 9.3 NaturalTransformations............................................. 197 9.3.1 EquivalenceofCategories.................................. 198 9.4 RepresentableFunctors .............................................. 200 9.4.1 DefinitionsviaUniversalProperties....................... 203 9.5 AdjointFunctors ..................................................... 205 9.5.1 TensorProductsVersusHomFunctors.................... 206 9.6 LimitsofDiagrams................................................... 213 9.6.1 (Co)completeness.......................................... 217 9.6.2 FilteredDiagrams........................................... 218 9.6.3 FunctorialPropertiesof(Co)limits........................ 219 ProblemsforIndependentSolutiontoChapter9........................... 222 10 ExtensionsofCommutativeRings........................................ 227 10.1 IntegralElements..................................................... 227 10.1.1 DefinitionandPropertiesofIntegralElements............ 227 10.1.2 AlgebraicIntegers.......................................... 230 10.1.3 NormalRings............................................... 231 10.2 ApplicationstoRepresentationTheory ............................. 232 10.3 AlgebraicElementsinAlgebras..................................... 234 Contents xi 10.4 TranscendenceGenerators........................................... 236 ProblemsforIndependentSolutiontoChapter10 ......................... 239 11 AffineAlgebraicGeometry................................................ 241 11.1 SystemsofPolynomialEquations................................... 241 11.2 AffineAlgebraic–GeometricDictionary............................ 243 11.2.1 CoordinateAlgebra......................................... 243 11.2.2 MaximalSpectrum ......................................... 244 11.2.3 PullbackHomomorphisms................................. 246 11.3 ZariskiTopology ..................................................... 250 11.3.1 IrreducibleComponents.................................... 251 11.4 RationalFunctions ................................................... 253 11.4.1 TheStructureSheaf......................................... 254 11.4.2 PrincipalOpenSetsasAffineAlgebraicVarieties........ 255 11.5 GeometricPropertiesofAlgebraHomomorphisms................ 256 11.5.1 ClosedImmersions......................................... 257 11.5.2 DominantMorphisms ...................................... 257 11.5.3 FiniteMorphisms........................................... 258 11.5.4 NormalVarieties............................................ 259 ProblemsforIndependentSolutiontoChapter11 ......................... 261 12 AlgebraicManifolds........................................................ 265 12.1 DefinitionsandExamples............................................ 265 12.1.1 StructureSheafandRegularMorphisms.................. 268 12.1.2 ClosedSubmanifolds....................................... 268 12.1.3 FamiliesofManifolds...................................... 269 12.1.4 SeparatedManifolds........................................ 269 12.1.5 RationalMaps .............................................. 271 12.2 ProjectiveVarieties................................................... 272 12.3 ResultantSystems.................................................... 274 12.3.1 ResultantofTwoBinaryForms............................ 276 12.4 ClosenessofProjectiveMorphisms................................. 278 12.4.1 FiniteProjections........................................... 279 12.5 DimensionofanAlgebraicManifold ............................... 281 12.5.1 DimensionsofSubvarieties................................ 283 12.5.2 DimensionsofFibersofRegularMaps.................... 285 12.6 DimensionsofProjectiveVarieties.................................. 286 ProblemsforIndependentSolutiontoChapter12 ......................... 290 13 AlgebraicFieldExtensions ................................................ 295 13.1 FiniteExtensions..................................................... 295 13.1.1 PrimitiveExtensions........................................ 296 13.1.2 Separability ................................................. 297 13.2 ExtensionsofHomomorphisms..................................... 300 13.3 SplittingFieldsandAlgebraicClosures............................. 302 13.4 NormalExtensions................................................... 304
Description: