ebook img

Algebra II: Textbook for Students of Mathematics PDF

377 Pages·2017·3.78 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Algebra II: Textbook for Students of Mathematics

Alexey L. Gorodentsev Algebra II Textbook for Students of Mathematics Algebra II Alexey L. Gorodentsev Algebra II Textbook for Students of Mathematics 123 AlexeyL.Gorodentsev FacultyofMathematics NationalResearchUniversity “HigherSchoolofEconomics” Moscow,Russia OriginallypublishedinRussianas“Algebra.Uchebnikdlyastudentov-matematikov.Chast’ 2”,©MCCME2015 ISBN978-3-319-50852-8 ISBN978-3-319-50853-5 (eBook) DOI10.1007/978-3-319-50853-5 LibraryofCongressControlNumber:2017930683 MathematicsSubjectClassification(2010):11.01,12.01,13.01,14.01,15.01,16.01,18.01,20.01 ©SpringerInternationalPublishingAG2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Thisisthesecondpartofa2-yearcourseofabstractalgebraforstudentsbeginning a professional study of higher mathematics.1 This textbook is based on courses givenattheIndependentUniversityofMoscowandattheFacultyofMathematics at the NationalResearch University Higher Schoolof Economics.In particular,it containsalargenumberofexercisesthatwerediscussedinclass,someofwhichare providedwithcommentaryandhints,aswellasproblemsforindependentsolution thatwereassignedashomework.Workingouttheexercisesisofcrucialimportance inunderstandingthesubjectmatterofthisbook. Moscow,Russia AlexeyL.Gorodentsev 1Throughoutthisbook,thefirstvolumewillbereferredtoasAlgebraI. v Contents 1 TensorProducts............................................................. 1 1.1 MultilinearMaps..................................................... 1 1.1.1 MultilinearMapsBetweenFreeModules................. 1 1.1.2 UniversalMultilinearMap................................. 3 1.2 TensorProductofModules.......................................... 4 1.2.1 ExistenceofTensorProduct ............................... 5 1.2.2 LinearMapsasTensors .................................... 7 1.2.3 TensorProductsofAbelianGroups ....................... 9 1.3 Commutativity,Associativity,andDistributivityIsomorphisms... 10 1.4 TensorProductofLinearMaps...................................... 13 1.5 TensorProductofModulesPresentedbyGenerators andRelations......................................................... 15 ProblemsforIndependentSolutiontoChapter1........................... 17 2 TensorAlgebras............................................................. 21 2.1 FreeAssociativeAlgebraofaVectorSpace........................ 21 2.2 Contractions.......................................................... 22 2.2.1 CompleteContraction...................................... 22 2.2.2 PartialContractions......................................... 23 2.2.3 LinearSupportandRankofaTensor...................... 25 2.3 QuotientAlgebrasofaTensorAlgebra ............................. 26 2.3.1 SymmetricAlgebraofaVectorSpace..................... 26 2.3.2 SymmetricMultilinearMaps .............................. 27 2.3.3 TheExteriorAlgebraofaVectorSpace................... 29 2.3.4 AlternatingMultilinearMaps.............................. 30 2.4 SymmetricandAlternatingTensors................................. 31 2.4.1 SymmetrizationandAlternation........................... 32 2.4.2 StandardBases.............................................. 33 2.5 PolarizationofPolynomials ......................................... 35 2.5.1 EvaluationofPolynomialsonVectors..................... 36 2.5.2 CombinatorialFormulaforCompletePolarization....... 37 vii viii Contents 2.5.3 Duality ...................................................... 38 2.5.4 DerivativeofaPolynomialAlongaVector ............... 38 2.5.5 PolarsandTangentsofProjectiveHypersurfaces......... 40 2.5.6 LinearSupportofaHomogeneousPolynomial........... 43 2.6 PolarizationofGrassmannianPolynomials......................... 45 2.6.1 Duality ...................................................... 45 2.6.2 PartialDerivativesinanExteriorAlgebra................. 46 2.6.3 Linear Support of a Homogeneous GrassmannianPolynomial ................................. 47 2.6.4 GrassmannianVarietiesandthePlückerEmbedding..... 49 2.6.5 TheGrassmannianasanOrbitSpace...................... 49 ProblemsforIndependentSolutiontoChapter2........................... 51 3 SymmetricFunctions....................................................... 57 3.1 SymmetricandSignAlternatingPolynomials...................... 57 3.2 ElementarySymmetricPolynomials................................ 60 3.3 CompleteSymmetricPolynomials.................................. 61 3.4 Newton’sSumsofPowers........................................... 62 3.4.1 GeneratingFunctionforthep ............................. 62 k 3.4.2 Transitionfrome andh top ............................. 63 k k k 3.5 Giambelli’sFormula ................................................. 65 3.6 Pieri’sFormula ....................................................... 67 3.7 TheRingofSymmetricFunctions .................................. 69 ProblemsforIndependentSolutiontoChapter3........................... 71 4 CalculusofArrays,Tableaux,andDiagrams ........................... 75 4.1 Arrays................................................................. 75 4.1.1 NotationandTerminology ................................. 75 4.1.2 VerticalOperations......................................... 76 4.1.3 CommutationLemma ...................................... 77 4.2 Condensing........................................................... 79 4.2.1 CondensedArrays.......................................... 79 4.2.2 BidenseArraysandYoungDiagrams ..................... 80 4.2.3 YoungTableaux............................................. 81 4.2.4 YamanouchiWords......................................... 82 4.2.5 FiberProductTheorem..................................... 83 4.3 ActionoftheSymmetricGrouponDU-Sets ....................... 86 4.3.1 DU-SetsandDU-Orbits.................................... 86 4.3.2 ActionofS DAut.J/..................................... 86 m 4.4 CombinatorialSchurPolynomials................................... 88 4.5 TheLittlewood–RichardsonRule ................................... 91 4.5.1 TheJacobi–TrudiIdentity.................................. 93 4.5.2 Transitionfrome(cid:2)andh(cid:2)tos(cid:2) ............................ 93 4.6 TheInnerProductonƒ.............................................. 95 ProblemsforIndependentSolutiontoChapter4........................... 96 Contents ix 5 BasicNotionsofRepresentationTheory................................. 99 5.1 RepresentationsofaSetofOperators............................... 99 5.1.1 AssociativeEnvelope....................................... 99 5.1.2 Decomposabilityand(Semi)/Simplicity .................. 100 5.1.3 HomomorphismsofRepresentations...................... 103 5.2 RepresentationsofAssociativeAlgebras ........................... 104 5.2.1 DoubleCentralizerTheorem............................... 104 5.2.2 Digression:ModulesOverNoncommutativeRings ...... 106 5.3 IsotypicComponents................................................. 107 5.4 RepresentationsofGroups........................................... 109 5.4.1 DirectSumsandTensorConstructions.................... 109 5.4.2 RepresentationsofFiniteAbelianGroups................. 111 5.4.3 ReynoldsOperator.......................................... 113 5.5 GroupAlgebras....................................................... 114 5.5.1 CenterofaGroupAlgebra................................. 115 5.5.2 IsotypicDecompositionofaFiniteGroupAlgebra....... 115 5.6 SchurRepresentationsofGeneralLinearGroups .................. 121 5.6.1 ActionofGL.V/(cid:2)S onV˝n ............................. 122 n 5.6.2 TheSchur–WeylCorrespondence ......................... 124 ProblemsforIndependentSolutiontoChapter5........................... 124 6 RepresentationsofFiniteGroupsinGreaterDetail.................... 131 6.1 OrthogonalDecompositionofaGroupAlgebra.................... 131 6.1.1 InvariantScalarProductandPlancherel’sFormula....... 131 6.1.2 IrreducibleIdempotents.................................... 133 6.2 Characters............................................................. 134 6.2.1 Definition,Properties,andExamplesofComputation.... 134 6.2.2 TheFourierTransform ..................................... 137 6.2.3 RingofRepresentations.................................... 140 6.3 InducedandCoinducedRepresentations............................ 141 6.3.1 Restricted and InducedModules Over AssociativeAlgebras....................................... 141 6.3.2 InducedRepresentationsofGroups........................ 142 6.3.3 TheStructureofInducedRepresentations................. 143 6.3.4 CoinducedRepresentations ................................ 146 ProblemsforIndependentSolutiontoChapter6........................... 148 7 RepresentationsofSymmetricGroups................................... 151 7.1 ActionofS onFilledYoungDiagrams............................. 151 n 7.1.1 RowandColumnSubgroupsAssociatedwith aFilling ..................................................... 151 7.1.2 YoungSymmetrizerss Dr (cid:3)c ......................... 153 T T T 7.1.3 YoungSymmetrizerss0 Dc (cid:3)r ......................... 155 T T T 7.2 ModulesofTabloids ................................................. 157 x Contents 7.3 SpechtModules ...................................................... 159 7.3.1 DescriptionandIrreducibility.............................. 159 7.3.2 StandardBasisNumberedbyYoungTableaux............ 160 7.4 RepresentationRingofSymmetricGroups......................... 161 7.4.1 Littlewood–RichardsonProduct ........................... 162 7.4.2 ScalarProducton<........................................ 163 7.4.3 TheIsometricIsomorphism<⥲ƒ....................... 164 7.4.4 DimensionsofIrreducibleRepresentations............... 168 ProblemsforIndependentSolutiontoChapter7........................... 170 8 sl2-Modules ................................................................. 173 8.1 LieAlgebras.......................................................... 173 8.1.1 UniversalEnvelopingAlgebra............................. 173 8.1.2 RepresentationsofLieAlgebras........................... 174 8.2 Finite-DimensionalSimplesl2-Modules............................ 176 8.3 SemisimplicityofFinite-Dimensionalsl2-Modules................ 179 ProblemsforIndependentSolutiontoChapter8........................... 183 9 CategoriesandFunctors................................................... 187 9.1 Categories............................................................. 187 9.1.1 ObjectsandMorphisms.................................... 187 9.1.2 Mono-,Epi-,andIsomorphisms........................... 189 9.1.3 ReversingofArrows........................................ 190 9.2 Functors............................................................... 191 9.2.1 CovariantFunctors ......................................... 191 9.2.2 Presheaves .................................................. 192 9.2.3 TheFunctorsHom.......................................... 195 9.3 NaturalTransformations............................................. 197 9.3.1 EquivalenceofCategories.................................. 198 9.4 RepresentableFunctors .............................................. 200 9.4.1 DefinitionsviaUniversalProperties....................... 203 9.5 AdjointFunctors ..................................................... 205 9.5.1 TensorProductsVersusHomFunctors.................... 206 9.6 LimitsofDiagrams................................................... 213 9.6.1 (Co)completeness.......................................... 217 9.6.2 FilteredDiagrams........................................... 218 9.6.3 FunctorialPropertiesof(Co)limits........................ 219 ProblemsforIndependentSolutiontoChapter9........................... 222 10 ExtensionsofCommutativeRings........................................ 227 10.1 IntegralElements..................................................... 227 10.1.1 DefinitionandPropertiesofIntegralElements............ 227 10.1.2 AlgebraicIntegers.......................................... 230 10.1.3 NormalRings............................................... 231 10.2 ApplicationstoRepresentationTheory ............................. 232 10.3 AlgebraicElementsinAlgebras..................................... 234 Contents xi 10.4 TranscendenceGenerators........................................... 236 ProblemsforIndependentSolutiontoChapter10 ......................... 239 11 AffineAlgebraicGeometry................................................ 241 11.1 SystemsofPolynomialEquations................................... 241 11.2 AffineAlgebraic–GeometricDictionary............................ 243 11.2.1 CoordinateAlgebra......................................... 243 11.2.2 MaximalSpectrum ......................................... 244 11.2.3 PullbackHomomorphisms................................. 246 11.3 ZariskiTopology ..................................................... 250 11.3.1 IrreducibleComponents.................................... 251 11.4 RationalFunctions ................................................... 253 11.4.1 TheStructureSheaf......................................... 254 11.4.2 PrincipalOpenSetsasAffineAlgebraicVarieties........ 255 11.5 GeometricPropertiesofAlgebraHomomorphisms................ 256 11.5.1 ClosedImmersions......................................... 257 11.5.2 DominantMorphisms ...................................... 257 11.5.3 FiniteMorphisms........................................... 258 11.5.4 NormalVarieties............................................ 259 ProblemsforIndependentSolutiontoChapter11 ......................... 261 12 AlgebraicManifolds........................................................ 265 12.1 DefinitionsandExamples............................................ 265 12.1.1 StructureSheafandRegularMorphisms.................. 268 12.1.2 ClosedSubmanifolds....................................... 268 12.1.3 FamiliesofManifolds...................................... 269 12.1.4 SeparatedManifolds........................................ 269 12.1.5 RationalMaps .............................................. 271 12.2 ProjectiveVarieties................................................... 272 12.3 ResultantSystems.................................................... 274 12.3.1 ResultantofTwoBinaryForms............................ 276 12.4 ClosenessofProjectiveMorphisms................................. 278 12.4.1 FiniteProjections........................................... 279 12.5 DimensionofanAlgebraicManifold ............................... 281 12.5.1 DimensionsofSubvarieties................................ 283 12.5.2 DimensionsofFibersofRegularMaps.................... 285 12.6 DimensionsofProjectiveVarieties.................................. 286 ProblemsforIndependentSolutiontoChapter12 ......................... 290 13 AlgebraicFieldExtensions ................................................ 295 13.1 FiniteExtensions..................................................... 295 13.1.1 PrimitiveExtensions........................................ 296 13.1.2 Separability ................................................. 297 13.2 ExtensionsofHomomorphisms..................................... 300 13.3 SplittingFieldsandAlgebraicClosures............................. 302 13.4 NormalExtensions................................................... 304

Description:
This book is the second volume of an intensive “Russian-style” two-year undergraduate course in abstract algebra, and introduces readers to the basic algebraic structures – fields, rings, modules, algebras, groups, and categories – and explains the main principles of and methods for working
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.