ebook img

Algebra and Number Theory. A Selection of Highlights PDF

327 Pages·2017·1.506 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Algebra and Number Theory. A Selection of Highlights

Benjamin Fine, Anthony Gaglione, Anja Moldenhauer, Gerhard Rosenberger, Dennis Spellman Algebra and Number Theory A Selection of Highlights MathematicsSubjectClassification2010 0001,00A06,1101,1201 Authors Prof.Dr.BenjaminFine Prof.Dr.GerhardRosenberger FairfieldUniversity UniversityofHamburg DepartmentofMathematics DepartmentofMathematics 1073NorthBensonRoad Bundesstr.55 Fairfield,CT06430 20146Hamburg USA Germany Prof.Dr.AnthonyGaglione Prof.Dr.DennisSpellman UnitedStatesNavalAcademy TempleUniversity DepartmentofMathematics DepartmentofMathematics 212BlakeRoad 1801NBroadStreet Annapolis,MD21401 Philadelphia,PA19122 USA USA Dr.AnjaMoldenhauer UniversityofHamburg DepartmentofMathematics Bundesstr.55 20146Hamburg Germany ISBN978-3-11-051584-8 e-ISBN(PDF)978-3-11-051614-2 e-ISBN(EPUB)978-3-11-051626-5 LibraryofCongressCataloging-in-PublicationData ACIPcatalogrecordforthisbookhasbeenappliedforattheLibraryofCongress. BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2017WalterdeGruyterGmbH,Berlin/Boston Typesetting:VTeXUAB,Lithuania Printingandbinding:CPIbooksGmbH,Leck Coverimage:agsandrew/iStock/GettyImagesPlus ♾Printedonacid-freepaper PrintedinGermany www.degruyter.com Preface Tomanystudents,aswellastomanyteachers,mathematicsseemslikeamundane discipline,filledwithrulesandalgorithmsanddevoidofbeautyandart.Howeverto someonewhotrulydigsdeeplyintomathematicsthisisquitefarfromthetruth.The worldofmathematicsispopulatedwithtruegems;resultsthatbothastoundandpoint toaunityinboththeworldandaseeminglychaoticsubject.Itisoftenthatthesegems andtheirsurprisingresultsareusedtopointtotheexistenceofaforcegoverningthe universe;thatis,theypointtoahigherpower.Euler’smagicformula,eiπ+1=0,which wegooverandproveinthisbookisoftencitedasaproofoftheexistenceofGod.While tosomeoneseeingthisstatementforthefirsttimeitmightseemoutlandish,howeverif onedelvesintohowthisresultisgeneratednaturallyfromsuchadisparatecollection ofnumbersitdoesnotseemsostrangetoattributetoitacertainmysticalsignificance. Unfortunatelymoststudentsofmathematicsonlyseebitsandpiecesofthisamaz- ing discipline. In this book, which we call Algebra and Number Theory, we intro- duceandexaminemanyoftheseexcitingresults.Weplannedthisbooktobeusedin coursesforteachersandforthegeneralmathematicallyinterestedsoitissomewhat betweenatextbookandjustacollectionofresults.Weexaminethesemathematical gemsandalsotheirproofs,developingwhatevermathematicalresultsandtechniques weneedalongtheway.InGermanyandtheUnitedStatesweseethebookasaMasters LevelBookforprospectiveteachers. WiththeincreasingdemandforeducationintheSTEMsubjects,thereisthereal- izationthattogetbetterteachinginmathematics,theprospectiveteachersmustboth bemoreknowledgeableinmathematicsandexcitedaboutthesubject.Thecoursesin teacherpreparationdonottouchmanyoftheseresultsthatmakethedisciplinesoex- citing.Thisbookisintendedtoaddressthisissue.ThefirstvolumeisonAlgebraand NumberTheory.Wetouchonnumbersandnumbersystems,polynomialsandpoly- nomialequations,geometryandgeometricconstructions.Thesepartsaresomewhat independentsoaprofessorcanpickandchoosetheareastoconcentrateon.Much morematerialisincludedthancanbecoveredinasinglecourse.Weproveallrele- vantresultsthatarenottootechnicalorcomplicatedtoscarethestudents.Wefind thatmathematicsisalsotiedtoitshistorysoweincludemanyhistoricalcomments. Wetrytointroduceallthatisnecessaryhoweverwedopresupposecertainsub- jects from school and undergraduate mathematics. These include basic knowledge inalgebra,geometryandcalculusaswellassomeknowledgeofmatricesandlinear equations.Beyondthesethebookisself-contained. ThisfirstvolumeoftwoiscalledAlgebraandNumberTheory.Therearefourteen chaptersandwethinkwehaveintroducedaverywidecollectionofresultsofthetype thatwehavealludedtoabove.InChapters1–5welookathighlightsontheintegers.We examineuniquefactorizationandmodulararithmeticandrelatedideas.Weshowhow thesebecomecriticalcomponentsofmoderncryptographyespeciallypublickeycryp- tographicmethodssuchasRSA.Threeoftheauthors(Fine,MoldenhauerandRosen- berger)workpartlyascryptographerssocryptographyismentionedandexplained inseveralplaces.InChapters4and5welookatexceptionalclassesofintegerssuch astheFibonaccinumbersaswellastheFermatnumbers,Mersennenumbers,perfect numbersandPythagoreantriples.Weexplainthegoldensectionaswellasexpressing integersassumsofsquares.InChapters6–8welookatresultsinvolvingpolynomi- alsandpolynomialequations.Weexplainfieldextensionsatanunderstandablelevel andthenprovetheinsolvabilityofthequinticandbeyond.Theinsolvabilityofthe quinticingeneralisoneoftheimportantresultsofmodernmathematics. InChapters9–12welookathighlightsfromtherealandcomplexnumbersleading eventuallytoanexplanationandproofoftheFundamentalTheoremofAlgebra.Along thewayweconsidertheamazingpropertiesofthenumberseandπandproveindetail thatthesetwonumbersaretranscendent. Chapter13isconcernedwiththeclassicalproblemofgeometricconstructionsand usesthematerialwedevelopedonfieldextensionstoprovetheimpossibilityofcertain constructions. FinallyinChapter14welookatEuclideanVectorSpaces.Wegiveseveralgeomet- ricapplicationsandlookforinstanceatasecretsharingprotocolusingtheclosest vectortheorem. Wewouldliketothankthepeoplewhowereinvolvedinthepreparationofthe manuscript.Theirdedicatedparticipationintranslatingandproofreadingaregrate- fully acknowledged. In particular, we have to mention Anja Rosenberger, Annika SchürenbergandthemanystudentswhohavetakentherespectivecoursesinDort- mund,FairfieldandHamburg.Thosemathematical,stylistic,andorthographicerrors thatundoubtedlyremainshallbechargedtotheauthors.Lastbutnotleast,wethank deGruyterforpublishingourbook. BenjaminFine AnthonyGaglione AnjaMoldenhauer GerhardRosenberger DennisSpellman Contents Preface|V 1 Thenatural,integralandrationalnumbers|1 1.1 Numbertheoryandaxiomaticsystems|1 1.2 Thenaturalnumbersandinduction|1 1.3 Theintegersℤ|10 1.4 Therationalnumbersℚ|13 1.5 Theabsolutevalueinℕ,ℤandℚ|15 2 Divisionandfactorizationintheintegers|19 2.1 TheFundamentalTheoremofArithmetic|19 2.2 Thedivisionalgorithmandthegreatestcommondivisor|23 2.3 TheEuclideanalgorithm|26 2.4 Leastcommonmultiples|30 2.5 Generalgcd’sandlcm’s|33 3 Modulararithmetic|39 3.1 Theringofintegersmodulon|39 3.2 UnitsandtheEulerφ-function|43 3.3 RSAcryptosystem|46 3.4 TheChineseRemainderTheorem|47 3.5 Quadraticresidues|54 4 Exceptionalnumbers|61 4.1 TheFibonaccinumbers|61 4.1.1 Thegoldenrectangle|67 4.1.2 Squaresinsemicircles|68 4.1.3 Sidelengthofaregular10-gon|69 4.1.4 Constructionofthegoldensectionαwithcompassandstraightedge fromagivena∈ℝ,a>0|70 4.2 PerfectnumbersandMersennenumbers|71 4.3 Fermatnumbers|78 5 Pythagoreantriplesandsumsofsquares|83 5.1 ThePythagoreanTheorem|83 5.2 ClassificationofthePythagoreantriples|85 5.3 Sumofsquares|89 6 Polynomialsanduniquefactorization|95 6.1 Polynomialsoveraring|95 6.2 Divisibilityinrings|98 6.3 TheringofpolynomialsoverafieldK|100 6.3.1 Thedivisionalgorithmforpolynomials|101 6.3.2 Zerosofpolynomials|103 6.4 Horner-Scheme|108 6.5 TheEuclideanalgorithmandgreatestcommondivisorofpolynomials overfields|112 6.5.1 TheEuclideanalgorithmforK[x]|114 6.5.2 UniquefactorizationofpolynomialsinK[x]|115 6.5.3 Generaluniquefactorizationdomains|116 6.6 PolynomialinterpolationandtheShamirsecretsharingscheme|117 6.6.1 Secretsharing|117 6.6.2 PolynomialinterpolationoverafieldK|117 6.6.3 TheShamirsecretsharingscheme|121 7 Fieldextensionsandsplittingfields|125 7.1 Fields,subfieldandcharacteristic|125 7.2 Fieldextensions|126 7.3 Finiteandalgebraicfieldextensions|131 7.3.1 Finitefields|134 7.4 Splittingfields|135 8 Permutationsandsymmetricpolynomials|141 8.1 Permutations|141 8.2 Cycledecompositionofapermutation|144 8.2.1 ConjugateelementsinSn|147 8.2.2 MarshallHall’sTheorem|148 8.3 Symmetricpolynomials|151 9 Realnumbers|157 9.1 Therealnumbersystem|157 9.2 Decimalrepresentationofrealnumbers|168 9.3 Periodicdecimalnumbersandtherationalnumber|172 9.4 Theuncountabilityofℝ|173 9.5 Continuedfractionrepresentationofrealnumbers|175 9.6 TheoremofDirichletandCauchy’sInequality|176 9.7 p-adicnumbers|178 9.7.1 NormedfieldsandCauchycompletions|179 9.7.2 Thep-adicfields|180 9.7.3 Thep-adicnorm|183 9.7.4 Theconstructionofℚp|184 9.7.5 Ostrowski’stheorem|185 10 Thecomplexnumbers,theFundamentalTheoremofAlgebraandpolynomial equations|189 10.1 Thefieldℂofcomplexnumbers|189 10.2 Thecomplexplane|193 10.2.1 Geometricinterpretationofcomplexoperations|196 10.2.2 PolarformandEuler’sidentity|197 10.2.3 Otherconstructionsofℂ|201 10.2.4 TheGaussianintegers|201 10.3 TheFundamentalTheoremofAlgebra|202 10.3.1 FirstproofoftheFundamentalTheoremofAlgebra|204 10.3.2 SecondproofoftheFundamentalTheoremofAlgebra|207 10.4 Solvingpolynomialequationsintermsofradicals|209 10.5 SkewfieldextensionsofℂandFrobenius’sTheorem|220 11 QuadraticnumberfieldsandPell’sequation|227 11.1 Algebraicextensionsofℚ|227 11.2 Algebraicandtranscendentalnumbers|228 11.3 Discriminantandnorm|230 11.4 Algebraicintegers|235 11.4.1 Theringofalgebraicintegers|236 11.5 Integralbases|238 11.6 Quadraticfieldsandquadraticintegers|240 12 Transcendentalnumbersandthenumberseandπ|249 12.1 Thenumberseandπ|249 12.1.1 Calculationeofπ|251 12.2 Theirrationalityofeandπ|256 12.3 eandπthroughoutmathematics|263 12.3.1 Thenormaldistribution|263 12.3.2 TheGammaFunctionandStirling’sapproximation|264 12.3.3 TheWallisProductFormula|266 12.4 Existenceofatranscendentalnumber|270 12.5 Thetranscendenceofeandπ|273 12.6 Anamazingpropertyofπandaconnectiontoprimenumbers|282 13 Compassandstraightedgeconstructionsandtheclassical problems|289 13.1 Historicalremarks|289 13.2 Geometricconstructions|289 13.3 Fourclassicalconstructionproblems|296 13.3.1 Squaringthecircle(problemofAnaxagoras500–428BC)|296 13.3.2 ThedoublingofthecubeortheproblemfromDeli|296 13.3.3 Thetrisectionofanangle|297 13.3.4 Constructionofaregularn-gon|298 14 Euclideanvectorspaces|303 14.1 Lengthandangle|303 14.2 OrthogonalityandApplicationsinℝ2andℝ3|309 14.3 Orthonormalizationandclosestvector|317 14.4 Polynomialapproximation|321 14.5 Secretsharingschemeusingtheclosestvectortheorem|323 Bibliography|327 Index|329 1 The natural, integral and rational numbers 1.1 Numbertheoryandaxiomaticsystems Numbertheorybeginsasthestudyofthewholenumbersorcountingnumbers.For- mallythecountingnumbers1,2,…arecalledthenaturalnumbersanddenotedbyℕ. Ifweaddtothisthenumberzero,denotedby0,andthenegativewholenumberswe getamorecomprehensivesystemcalledtheintegerswhichwedenotebyℤ.Thefocus ofthisbookisonimportantandsometimessurprisingresultsinnumbertheoryand thenfurtherresultsinalgebra.Manyresultsinnumbertheory,asweshallsee,seem likemagic.Inordertorigorouslyprovetheseresultsweplacethewholetheoryinan axiomaticsettingwhichwenowexplain. Inmathematics,whendevelopingaconceptoratheoryitisoftennotpossible,all usedterms,propertiesorclaimstoprove,especiallyexistenceofsomemathematical fundamentals.Onecansolvethisproblemthenbyanaxiomaticapproach.Thebasis ofatheorythenisasystemofaxioms: – Certainobjectsandcertainpropertiesoftheseobjectsaretakenasgivenandac- cepted. – Aselectionofstatements(theaxioms)areconsideredbydefinitionastrueand evident. Atheoreminthetheorythenisatruestatement,whosetruthcanbeprovedfromthe axiomswithhelpoftrueimplications.Asystemofaxiomsisconsistentifonecannot proveastatementoftheform“AandnotA”.Theverificationisinindividualcases oftenacomplicatedorevenanunsolvableproblem.Wearesatisfied,ifwecanquote amodelforthesystemofaxioms,thatis,asystemofconcreteobjects,whichmeetall thegivenaxioms.Asystemofaxiomsiscalledcategoricalifessentiallythereexists only one model. By this we mean that for any two models we always get from one modeltotheotherbyrenamingoftheobjects.Ifthisistruethenwehaveanaxiomatic characterizationofthemodel. Inthenextsectionweintroducethenaturalnumbersaxiomatically. 1.2 Thenaturalnumbersandinduction ThenaturalnumbersℕarepresentedbythesystemofaxiomsdevelopedbyG.Peano (1858–1932).Thisisdoneasfollows. Thesetℕofthenaturalnumbersisdescribedbythefollowingaxioms: (ℕ1) 1∈ℕ. (ℕ2)Eacha∈ℕhasexactlyonesuccessora+∈ℕ. (ℕ3)Alwaysisa+≠1,andforeachb≠1thereexistsana∈ℕwithb=a+. (ℕ4)a≠b⇒a+≠b+. 2 | 1 Thenatural,integralandrationalnumbers (ℕ5)IfT⊂ℕ,1∈T,andiftogetherwitha∈Talsoa+∈T,thenT=ℕ. (Axiomofmathematicalinductionorjustinduction.) Remarks1.1. (1) (ℕ2)and(ℕ4)meanthatthemap σ∶ℕ→ℕ a↦a+ isinjective. (2) FromthePeanoaxiomswegetperdefinitionanaddition,amultiplicationandan orderingforℕ: (i) a+1∶=a+, a+b+∶=(a+b)+, (ii) a⋅1∶=a, a⋅b+∶=ab+a, (iii)a<b∶⇔∃x∈ℕwitha+x=b(“asmallerthanb”), a≤b∶⇔a=bora<b(“aequalorsmallerthanb”). Weneedtorecallsomedefinitions. AsemigroupisasetH ≠∅togetherwithabinaryoperation⋅∶H ×H →H that satisfiestheassociativepropertyforalla,b,c∈H: (a⋅b)⋅c=a⋅(b⋅c). Thesemigroupiscommutativeif a⋅b=b⋅a. Inthecommutativecaseweoftenwritetheoperationasaddition+insteadofmulti- plication⋅. AmonoidSisasemigroupwithaunityelemente,thatis,anelementewitha⋅e= a=e⋅aforalla∈S;eisuniquelydetermined. Moreover, a monoid S is called a group if for each a∈S there exists an inverse elementa−1∈Swithaa−1=a−1a=e.Themonoidorgroupisnamedcommutativeor abelianifinaddition a⋅b=b⋅a foralla,b∈S. Weoftenwrite1insteadofe.Wealsooftendrop⋅andusejustjuxtapositionforthis operation.Ifweusetheaddition+weoftenwrite0insteadofeandcall0thezero elementofS. Theorem1.2. (1) Theadditionforℕisassociative,thatis, a+(b+c)=(a+b)+c,

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.