Nonperturbative strange sea in proton using wave functions inspired by light front holography Alfredo Vega In collaboration with I. Schmidt, T. Gutsche and V. Lyubovitskij LC2016,Lisboa,Portugal September 5, 2016 1of27 Outline Introduction Brodsky - Ma Model Holographic Light Front Wave Functions (s −s¯) Asymmetry with Holographic LFWFs Final Comments and Conclusions 2of27 Introduction 3of27 Introduction In many cases it is necessary to consider contribution of sea quarks and gluons in order to understand hadron properties 4of27 Introduction Sea quarks in nucleon arise through 2 different mechanism: • Nonperturbative (Intrinsic). • Perturbative (Extrinsic). 5of27 Introduction (cid:63) Extrinsic sources of sea quarks. 1 • Arises from gluon radiation to qq¯ pairs. • Include QCD evolution. • Strongly peaked at low x. • Extrinsic sea quarks require q = q¯. Asymmetries (very small, low x) arise at NNLO order. 1 S.Catani,D.deFlorian,G.RodrigoandW.Vogelsang,Phys.Rev.Lett.93,152003(2004). 6of27 Introduction (cid:63) Intrinsic sources of sea quarks 2 • Arises from 4q+q¯ fluctuations of N Fock state. • Atstartingscale,peakedatintermediatex; more”valence-like”than extrinsic. • In general, q (cid:54)= q¯ for intrinsic sea. • Intrinsic parton distriutions move to lower x under QCD evolution. 2 e.gseeF.G.CaoandA.I.Signal,Phys.Rev.D60,074021(1999). 7of27 3 Brodsky - Ma Model 3 S.J.BrodskyandB.Q.Ma,Phys.Lett.B381,317(1996). 8of27 Brodsky-MaModel Inthelight-frontformalismtheprotonstatecanbeexpandedinaseries of components as (cid:80) |P(cid:105)=|uud(cid:105)ψ +|uudg(cid:105)ψ + |uudqq¯(cid:105)ψ +... uud/p uudg/p qq¯ uudqq¯/p • It is possible to consider a different light front approach, in which thenucleonhascomponentsarisingfrommeson-baryonfluctuations, while these hadronic components are composite systems of quarks. • In this case the nonperturbative contributions to the s(x) and s¯(x) distributions in the proton can be expressed as convolutions (cid:18) (cid:19) (cid:18) (cid:19) s(x)=(cid:82)1 dyf (y)q x and s¯(x)=(cid:82)1 dyf (y)q x x y Λ/KΛ s/Λ y x y K/KΛ s¯/K y 9of27 Brodsky-MaModel (cid:18) (cid:19) (cid:18) (cid:19) s(x)=(cid:82)1 dyf (y)q x and s¯(x)=(cid:82)1 dyf (y)q x x y Λ/KΛ s/Λ y x y K/KΛ s¯/K y • q and q are distributions of s quarks and s¯antiquarks in the s/Λ s¯/K Λ0 and K+, respectively. • The functions f (y) and f (y) describe the probability to Λ/KΛ K/KΛ find a Λ or a K with light-front momentum fraction y in the KΛ state. • To do calculations we need wave functions. f (y)=(cid:82) d2k |ψ (y,k)|2 B/BM 16π3 BM q (x)=(cid:82) d2k |ψ (x,k)|2 and q (x)=(cid:82) d2k |ψ (x,k)|2 s/Λ 16π3 Λ s¯/K 16π3 K 10of27
Description: