ebook img

Alarm flood reduction using multiple data sources PDF

95 Pages·2014·3.27 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Alarm flood reduction using multiple data sources

Alarm flood reduction using multiple data sources Vicent Rodrigo Marco Department of Automatic Control MSc Thesis ISRN LUTFD2/TFRT--5961--SE ISSN 0280-5316 Department of Automatic Control Lund University Box 118 SE-221 00 LUND Sweden © 2014 by Vicent Rodrigo Marco. All rights reserved. Printed in Sweden by Media-Tryck Lund 2014 Abstract Theintroductionofdistributedcontrolsystemsintheprocessindustryhasincreased thenumberofalarmsperoperatorexponentially.Modernplantspresentahighlevel of interconnectivity due to steam recirculation, heat integration and the complex control systems installed in the plant. When there is a disturbance in the plant it spreadsthroughitsmaterial,energyandinformationconnectionsaffectingthepro- cess variables on the path. The alarms associated to these process variables are triggered.Thealarmmessagesmayoverloadtheoperatorinthecontrolroom,who willnotbeabletoproperlyinvestigateeachoneofthesealarms.Thisundesiredsit- uationiscalledan“alarmflood”.Insuchsituationstheoperatormightnotbeableto keeptheplantwithinsafeoperation.Theaimofthisthesisistoreducealarmflood periodsinprocessplants.Consequentialalarmscomingfromthesameprocessab- normality are isolated and a causal alarm suggestion is given. The causal alarm in an alarm flood is the alarm associated to the asset originating the disturbance thatcausedtheflood.Multipleinformationsourcesareused:analarmlogcontain- ingallpastalarmsmessages,processdataandatopologymodeloftheplant.The alarm flood reduction is achieved with a combination of alarm log analysis, pro- cess data root-cause analysis and connectivity analysis. The research findings are implemented in a software tool that guides the user through the different steps of themethod.Finallytheapplicabilityofthemethodisprovedwithanindustrialcase study. 5 Acknowledgements I would like to use this oportunity to extend my sincere thanks to all the people withoutwhomthisthesiswouldnothavebeenpossible. Iwishtothank,firstandforemost,mysupervisorDrMoncefChioua(researcher in ABB Corporate Research Center in Ladenburg, Germany) for his patient guid- ance,encouragementandhiscriticalfeed-back.Hehelpedmetoshapemythoughts intherightdirection,notonlyonthisworkbutalsoformyfutureasanengineer.I considermyselfextremelyluckytohavesuchatalentedsupervisorthatwasalways availabletorespondtomyquestionsandqueries. Besidesmyadvisor,IwouldliketothankDrMartinHollenderforhisencour- agementandinsightfulcomments. Idedicatethisthesistomyparents,SalvaandRosa,andmybrotherCarlesfor theirlove,advicesandunconditionalsupportthroughoutmylife. 7 Contents 1. Introduction 11 1.1 AlarmSystems . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2 StateoftheArt . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.3 Scope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2. PatternanalysisofAlarmsequences 19 2.1 ModifiedSmith-Watermanalgorithm . . . . . . . . . . . . . . . 19 2.2 AgglomerativeHierarchicalClustering . . . . . . . . . . . . . . 23 3. Root-causeanalysisbasedonProcessData 27 3.1 PDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4. ConnectivityanalysisbasedonPlantTopology 33 4.1 Graphsinfaultdiagnosis . . . . . . . . . . . . . . . . . . . . . 33 4.2 IntelligentP&IDs . . . . . . . . . . . . . . . . . . . . . . . . . 38 5. TheMethod 41 5.1 RemoveChatteringalarms. . . . . . . . . . . . . . . . . . . . . 42 5.2 Identificationofalarmfloodperiods. . . . . . . . . . . . . . . . 45 5.3 Clusteralarmfloodsequences . . . . . . . . . . . . . . . . . . . 46 5.4 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.5 Root-causeanalysis . . . . . . . . . . . . . . . . . . . . . . . . 52 5.6 Plantareasselection . . . . . . . . . . . . . . . . . . . . . . . . 53 6. Softwaretool 55 6.1 Alarmloganalysis . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.2 Processdataanalysis. . . . . . . . . . . . . . . . . . . . . . . . 61 6.3 Topologyanalysis . . . . . . . . . . . . . . . . . . . . . . . . . 67 7. Industrialcasestudy 72 7.1 Processdescription . . . . . . . . . . . . . . . . . . . . . . . . 72 7.2 Plantareaidentification . . . . . . . . . . . . . . . . . . . . . . 73 7.3 Analysisarea01 . . . . . . . . . . . . . . . . . . . . . . . . . . 76 9 Contents 8. Conclusions 92 8.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 8.2 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Bibliography 93 10 1 Introduction This thesis presents the findings from the research conducted into establishing in- novative ways to manipulate process plant data to facilitate the supervision and monitoringofprocessplants.Anoff-linemethodtoreducealarmfloodinginalarm monitoringsystemsisproposedandasoftwaretoolthatprovespracticalapplicabil- ityoftheresearchfindingsisimplemented. 1.1 Alarm Systems Theprofitintheprocessindustryishighlyrelatedtotheplantoperation.Overthe last decades advanced operation and control approaches have been developed in order to optimally operate plants. This is done by keeping process variables at a specific value [Christofides et al., 2007]. A deviation from the optimal operation pointisusuallytranslatedintoaneconomiclossorendangeringtheenvironmentor thesafetyofthepersonnel.Theoperatorsworkinginthecontrolroomareincharge ofkeepingtheplantoperatingatthispoint. Analarmsystemisthemainelementthatinterfacesinmodernplantswiththe operator to the plants. It is a crucial element since it monitors the plant operation and alerts the operator when some undesired state that requires his assessment or actionisreached.Itsmainobjectivesare:toassisttheoperatortocorrectpotentially dangeroussituationsbeforetheemergencyshutdownsystemistriggered,toavoid financial loss by identifying deviations from the optimal operating conditions and to help the operator to better understand the process conditions that gave rise to the upset. The primary function of an alarm system is defined by the EEMUA as follows: The purpose of an alarm system is to direct the operator’s attention towards plantconditionsrequiringtimelyassessmentoraction[EEMUA-191,2007]. 11 Chapter1. Introduction 1.1.1 Alarms in Process Industry Analarmisasignalsenttotheoperatorsinordertodrawtheirattentionduringan abnormalsituationintheplant.Analarmoccurrencecomesusuallytogetherwitha sound,flashinglightandanindicator.Inaddition,alarmsusuallypresentamessage withsomeinformationabouttheproblem. Every alarm presented to the operator should be useful and relevant to the operator [EEMUA-191,2007].Ideally,foreachabnormalsituationjustonealarm israised.However,operatorsusuallyreceivealargeamountofalarmsinpractice. Most of these alarms are either false alarms, i.e. alarms that alert of an abnormal situation when there is none, or nuisance alarms, i.e. alarms that are redundant, sinceotheralarmshavealreadyinformedoftheabnormality. Traditionallyanalarminaprocessplantisassociatedtoaprocessvariablegoing outofitsnormalrange(seeFigure1.1). High alarm High alarm trip point Low alarm trip point Low alarm Figure1.1 Signalalarm These type of alarms are called absolute alarms. However, one should bear in mindthatmanyotheralarmdetectionmechanismsareusedinpractice,andnotall 12

Description:
terman (1981). Its objective was to identify the greater similarity (homology)" [Smith and Waterman, 1981]. 19 CADWorx also offers a tool that.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.