ebook img

Air-Ice-Ocean Interaction: Turbulent Ocean Boundary Layer Exchange Processes PDF

217 Pages·2008·10.78 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Air-Ice-Ocean Interaction: Turbulent Ocean Boundary Layer Exchange Processes

Air-Ice-Ocean Interaction Miles McPhee Air-Ice-Ocean Interaction Turbulent Ocean Boundary Layer Exchange Processes ABC MilesMcPhee McPheeResearchCompany Naches,WA USA ISBN978-0-387-78334-5 e-ISBN978-0-387-78335-2 LibraryofCongressControlNumber:2008928012 AllRightsReserved (cid:1)c 2008SpringerScience+BusinessMediaB.V. Nopartofthisworkmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorby anymeans,electronic,mechanical,photocopying,microfilming,recordingorotherwise,withoutwritten permissionfromthePublisher,withtheexceptionofanymaterialsuppliedspecificallyforthepurpose ofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthework. Printedonacid-freepaper 9 8 7 6 5 4 3 2 1 springer.com Preface The outline of this monograph is based loosely on a series of lectures delivered tostudentsenrolledintheair–sea–iceinteractioncourseattheUniversityCenterin Svalbard.Boththelecturesandthebookareproductsofoverthreedecadesoftrying (sometimesstruggling)todistillfrommeasurementsatnearlytwodozenice-station projectsofvaryingsizeandcomplexity,asomewhatcogentviewofhowthebound- ary layer that developsbetween sea ice and the underlyingocean behaves. While frommanyotherperspectives,polaroceanographicresearchisalwayschallenging, fromthepointofviewexpressedinthisbook,itsoverridingadvantageisthatseaice providesaplatformformakingturbulencemeasurementsthatareextremelydifficult elsewhere. In other words, it is a superb natural laboratoryfor studying planetary boundarylayersthroughouttheirwholeextent.Still,itisalaboratorythatdemands much of its users, and for useful results, almost always requires hard work, plus ahighdegreeofcooperationandperseveranceamongmanyscientistsandsupport personnel.Forme,thishasbeenoneofthemostrewardingaspectsofspendingmost of a scientific careerdevotedto high-latitudestudies. Time andagain,I haveseen theharshenvironmentbringoutthebestofpeopleintermsofinventivenessandall aroundcompetence.Andthebestisoftenvery,verygood.Itwouldbeadisservice tothemanywhohavehelpedwiththemeasurements,analysis,theory,andfunding, tosingleoutindividualsforspecialthanks—ithasalwaysbeenacompletelycollab- orativeeffort.Theoneexceptionis thatI wish to thankmy wife,Saundra,for her patiencewith the immediatetask of my writingthis book,for heroccasionalhelp withthefieldwork,formaintainingaclose-knitfamilyduringmyfrequentabsences onremoteprojects,butmainlyforalwayssupportingandsharingmypassionforthe scientificendeavor. Naches,WashingtonUSA MilesMcPhee 2008 v Contents 1 Introduction................................................... 1 1.1 ArcticChange ............................................. 1 1.2 TheSouthernOcean ........................................ 7 1.3 Ekman’sSeminalPaper ..................................... 8 1.4 PolarBoundary-LayerFieldStudies........................... 10 1.5 Roadmap ................................................. 12 References..................................................... 13 2 BasicPhysicalConcepts......................................... 15 2.1 ConservationEquationsinFluids ............................. 15 2.2 ReynoldsFluxes ........................................... 16 2.3 Rotation:TheCoriolisForceandGeostrophy ................... 18 2.3.1 GeostrophicShear ................................... 19 2.4 Boundary-LayerEquations................................... 19 2.5 InertialOscillations......................................... 20 2.6 EkmanPumping ........................................... 24 2.7 TheEquationofStateforSeawater............................ 28 References..................................................... 36 3 TurbulenceBasics.............................................. 39 3.1 GeneralCharacteristics...................................... 39 3.2 IOBLMeasurementTechniquesandExamples.................. 40 3.2.1 SmithRotors........................................ 40 3.2.2 TurbulenceInstrumentClusters ........................ 41 3.2.3 MomentumandScalarFluxMeasurements .............. 43 3.2.4 EstimatingConfidenceLimitsforCovarianceCalculations . 46 3.2.5 AveragingTimeandtheSpectralGap ................... 48 3.3 TurbulentKineticEnergyEquation............................ 51 3.4 ScalarVarianceConservation................................. 53 3.5 TurbulenceSpectraandtheEnergyCascade .................... 54 3.6 MixingLength,EddyViscosity,andthewSpectrum ............. 58 vii viii Contents 3.7 ScalarSpectra ............................................. 60 References..................................................... 62 4 SimilarityfortheIce/OceanBoundaryLayer...................... 65 4.1 TheSurfaceLayer.......................................... 65 4.1.1 MixingLengthintheNeutralSurfaceLayer.............. 67 4.1.2 TheLawoftheWallandSurfaceRoughnessLength....... 67 4.1.3 Monin-ObukhovSimilarity............................ 68 4.2 TheOuterLayer ........................................... 70 4.2.1 SimilarityforTurbulentStressintheOuterLayer ......... 72 4.2.2 RossbySimilarityfortheNeutralIOBL ................. 74 4.2.3 SimilarityfortheStablyStratifiedIOBL................. 77 4.3 IOBLSimilarityandtheAtmosphericBoundaryLayer ........... 81 4.3.1 DimensionlessShear ................................. 81 4.3.2 TheRossby-SimilarityParametersforStableStratification.. 83 4.4 Ice-EdgeBands ............................................ 83 References..................................................... 85 5 TurbulenceScalesfortheIce/OceanBoundaryLayer .............. 87 5.1 NeutralOBLScales ........................................ 87 5.1.1 IceStationWeddell .................................. 87 5.1.2 IceStationPolarstern................................. 93 5.2 TheIOBLwithStabilizingBoundaryBuoyancyFlux ............ 95 5.3 TheStaticallyUnstableIOBL ................................ 98 5.4 VelocityScalesintheIOBL..................................102 5.5 SummaryofIOBLScales....................................105 References.....................................................107 6 TheIce/OceanInterface ........................................109 6.1 EnthalpyandSaltBalanceattheInterface......................110 6.2 TurbulentExchangeCoefficients..............................112 6.3 The“Three-Equation”InterfaceSolution.......................114 6.4 HeatFluxMeasurementsandtheStantonNumberforSeaIce .....116 6.5 DoubleDiffusion—Melting..................................118 6.6 DoubleDiffusionandFalseBottoms ..........................119 6.7 Freezing—IsDoubleDiffusionImportant? .....................125 References.....................................................130 7 ANumericalModelfortheIce/OceanBoundaryLayer.............133 7.1 DifferenceEquations .......................................133 7.2 BoundaryConditions .......................................135 7.2.1 FluxofVariableθSpecifiedatUpperSurface ............136 7.2.2 VariableθSpecifiedatUpperSurface...................136 7.2.3 DynamicMomentumFluxCondition ...................137 7.2.4 FluxofθSpecifiedattheBottomofModelDomain.......138 7.2.5 θSpecifiedattheBottomoftheModelDomain ..........138 Contents ix 7.3 Steady-StateMomentumEquation ............................139 7.4 DistributedSources.........................................139 7.5 SolutionTechnique .........................................140 7.6 TheLocalTurbulenceClosureModel..........................140 7.7 TheIce/OceanInterfaceSubmodel............................143 References.....................................................143 8 LTCModelingExamples........................................145 8.1 DiurnalHeatingNeartheSolstice,SHEBA.....................146 8.2 InertialOscillationsinLateSummer,SHEBA...................151 8.2.1 WindForcedModel ..................................151 8.2.2 ModelsForcedbySurfaceVelocity .....................157 8.2.3 Short-TermVelocityPrediction ........................160 8.3 MarginalStaticStability,MaudNESS..........................162 References.....................................................170 9 TheSteadyLocalTurbulenceClosureModel......................173 9.1 ModelDescription..........................................176 9.2 TheEddyViscosity/DiffusivityIteration .......................177 9.3 Applications...............................................184 9.3.1 IceStationPolarstern.................................184 9.3.2 UndericeHydraulicRoughnessforSHEBA ..............186 9.3.3 SHEBATimeSeries..................................189 References.....................................................192 ColourPlates ......................................................193 Index .............................................................213 Chapter 1 Introduction Abstract:Earth’spolarregionsplayapivotalroleinclimate,bothasanimportant mediatorinexchangesbetweentheatmosphereandglobalocean,andasaharbinger ofclimatechange.Centraltothisimpactisathinlayerofseaicethatispredomi- nantlyseasonal,andatmaximumextent(attheendofaustralwinter)coversroughly 8%oftheworldoceanarea.Seaiceaffectsclimateinseveralimportantways.Itef- fectivelyinsulatestheoceanfromthecoldpolaratmosphere,reducingbothoutgoing longwaveradiationandconvectiveheatexchange;itreflectsamuchhigherpropor- tionofincomingshortwaveradiationthandoesopenwater;andbyrejectingsaltasit freezes,iscapableofproducingthecold,salinewaterthatconstitutestheendpoint in mixing processes that determine the density of the abyssal ocean. This chapter discusses the rationale behind a monograph on how sea ice affects atmosphere- oceanexchangesandhowstudiesofturbulentexchangeintheice-oceanboundary layer have revealed much about how planetary boundary layers (where rotation is important) work in general. It briefly describes pertinent ice-station exercises, and laysouttheframeworkforsubsequentchapters. 1.1 ArcticChange In early October 1997, I was part of a large party of polar scientists establishing the Surface Heat Budget of the Arctic (SHEBA) ice station, which was slated to driftforayearinmultiyearpackiceovertheCanadianBasininthewesternArctic Ocean. Its purpose was to assess the various energy components responsible for maintainingtheperennialseaiceoftheArctic.Earlier,afteralongweekwaitingin Tuktoyaktuk,NWT,fordecentflyingweather,mostofushadboardedtheCanadian CoastGuardicebreakerDesGrosiellier,whichwastoserveasourdriftingbasefor thenextyear,anticipatinganarduoustripfollowingourescorticebreaker(theCCS Louis St. Laurent) as it battered its way through thick ice toward the center of the Beaufort Gyre. Instead, those of us who had been in that part of the Arctic before wereastonishedathoweasyourpassagewasiniceoftenameterorlessthick.After M.McPhee,Air-Ice-OceanInteraction,1–14. 1 (cid:1)c SpringerScience+BusinessMediaB.V.,2008 2 1 Introduction alongsearchduringwhichwebeganto wonderifwe wouldevenfinda floewith adecentchanceofsurvivingthroughthenextsummer,weeventuallysettledonice about2mthick,andbegantheintenseactivityofdeployingthevariousinstrument systems. Sometimeduringthatfirstweekontheice,Isatforaninterviewwithreporters fromanationalnewsnetwork,andduringthequestioningtriedtosuccinctlyvoice thelongpracticedtalkingpointssummarizingtherationaleforthiscomplexandex- pensiveexperiment:thatclimatemodelsweresensitivetotheinsulatingandalbedo properties of sea ice; that polar regions were the “canary in the mine” for global warming;that many of us suspected, even if we could not proveit unequivocally, thatwarmingclimatewastiedtoourcollectiveappetiteforfossilcarbon,etc. The interviewwaslong,andofcourse,Iwasanxioustogetbacktothetaskofputting myinstrumentsinthewater,yetIalsounderstoodthenecessityofcommunicating ourworkandwhywethoughtitimportant.1 Within a couple of days after the media interview, we were able to start the SHEBA ocean profiler and to obtain the first samples of upper ocean temperature andsalinity.ThateveningIlookedovertheinitialprofiles,andcomparedthemwith data taken from a nearby location at the same time of year during the Arctic Ice Dynamics Joint Experiment(AIDJEX) in 1975. I had trouble sleeping that night, returningagainandagaintothe thoughtthatmychildrenor atleasttheir children would live to see an Arctic free of perennial sea ice. What kept me awake was a nebulousjuxtapositionof the intellectual versus emotionalsides of being a scien- tist.JustdaysbeforeIhadtriedtoexplaintowhatmightconceivablybeatelevision audienceofmillionsofpeoplehowourcravingforfossilfuelscould,accordingto thebestmodelswehad,permanentlychangeatleastoneofthedistinguishingpolar capsof our planet,and that our mission here was to try to better understandwhat roleratheresotericprocesseslikethealbedofeedbackmightplayinthattransition. The analytical side of me understood and accepted those physical arguments, yet there was still somethingessentially conservativein me that rejected the idea that my species could really modify something as fundamental as the earth’s climate inthe shortspanofafew decades.Butherewasevidencethatthingswereindeed changing,perhapsmuchfasterthanwehadthoughtpossible. Whythoseinitialprofilestriggeredmyconcernrequiressomeexplanation.First, theyindicatedthattheupperoceannearthecenteroftheBeaufortGyrewasatleast 10%fresherthanithadbeeninanypreviousmeasurementsIhadseen.Datafrom thecentralpartoftheGyrearequitelimitedbecausecompactandthickmultiyear sea ice had traditionally made it one of the hardest Arctic regions to sample. By itself,thefresheningwassomewhatalarmingbutcouldhavebeenduetoavariety offactors,includinganaccumulationoverseveralyearsoffreshwaterintothere- gionfromenhancedcontinentalrunoffcombinedwith changesin the wind-driven circulation.However,fromstudyingupperoceanevolutionatthefourAIDJEXdrift 1Whentheinterviewfinallyairedlaterthatfallononeofthenetworkmorningshows,itlastedfor lessthan1min,andcomprisedmainlymycommunicatingthat,yes,Ihadaccidentallyfalleninthe ArcticOceanbefore,andthat,yes,itwascold...Myexperiencewithothermediainterviewsand conversationswithjournalistsduringtheSHEBAdeploymentwasingeneralmuchmorepositive. 1.1 ArcticChange 3 stationsduringthesummerof1975,weknewthatinthenormalcourseoftheannual melt cycle, fresh water from the surface would form a relatively shallow seasonal pycnocline(densitygradient).Justbelowthiswouldbealayerofwaterpreserving approximatelythesametemperatureandsalinitycharacteristicsasthepreviouswin- ter’smixedlayer. By calculatingthe changein salinityofthe water columnabove thisremnantlayer,wecouldestimatetheamountoffreshwateraddedoverthemelt season.ItwasclearfromthatfirstSHEBAsampleinearlyOctoberthataremnant mixedlayerexistedfromabout30–45mdepth,andthattheseasonalmixedlayerin October(widespreadbasalfreezinghadnotyetstarted)wassofreshthattheremust havebeenexcessivemeltduringthesummerof1997.2Inotherwords,theevidence indicatedthatastrongice-albedofeedbackhadkickedin,andasIlayinmybunk aboardtheDesGrosiellierthatnightwhathadbeenupuntilthenatheoreticalexer- cisenowseemedveryreal. Theconceptofalbedofeedbackiseasilygrasped—basicallyiceishighlyreflec- tiveofincomingshortwave(solar)radiationwhileopenseawaterabsorbsnearlyall of it, so more open water melts ice which creates more open water, and so on— yet in addition to seasonal changes in albedo of the sea ice itself (Perovich et al. 2002),therearemanysubtletiesintheproblem,includingstorageofsensibleheat in the upperocean,the rate at which ice melts in contactwith abovefreezingwa- ter, protection of thin ice by collection of meltwater at the ice undersurface, and mixingofsensibleheatfrombelowtheice-oceanboundarylayer(hereafterabbre- viatedIOBL). Fromanearlieranalysisofocean-to-iceheatfluxduringtheAIDJEXexperiment inthesummerof1975(MaykutandMcPhee1995),wehadgainedanappreciation fortheimpactofrelativelysmallchangesiniceconcentrationontheicemassbal- ance.AIDJEXcomprisedanarrayoffourdriftstations,threeofwhichmadeatrian- glewithsidesroughly100kmlong,surroundingacentralstation.Overthecourse ofthesummer,wefoundthatintegratedoceanheatfluxattheeasternmoststation (Blue Fox) was about 200MJm−2 compared with about 150MJm−2 at the other stations.Thedifference,equivalenttoroughly20cmoficemelt,nearlyallaccumu- latedduringa ten-dayperiodbeginningaboutAugust10,nearlytwo monthsafter the summer solstice. A mosaic of aerial photographscoveringthe entire AIDJEX array taken fortuitously on August 18, revealed that there was considerably more openwaterinthevicinityofBlueFoxcomparedwiththeotherstations.Apparently this“openwindow”(weestimatedabout25%openwater)duringarelativelybrief periodin late summerwas enoughto increaseice meltbyabouta thirdcompared withthemorecompact(10%openwater)regionstothewest. In the decade following the 1997–1998 SHEBA deployment, most of the sci- entific community and indeed the mass media have become aware of profound changesoccurringintheArctic.Withregardtoseaice,themoststrikingsymptom 2Welaterquantifiedtheseideas(McPheeetal.1998)andsuggestedthatduringthe1997summer, fresheningequivalenttoasmuchas2.5moficemelthadoccurredintheseasonalmixedlayerin theSHEBAvicinity.Wecitedisotopeevidence(courtesyD.Kadko)thatwaterintheintermediate remnantlayerhadbeenincontactwiththesurfaceearlierinthesummer,andruledoutadvection offreshrunoffastheprimarysourcebecauseofourdistancefromthecontinentalmargin.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.