ebook img

Age-Period-Cohort Models: Approaches and Analyses with Aggregate Data PDF

216 Pages·2014·13.454 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Age-Period-Cohort Models: Approaches and Analyses with Aggregate Data

Statistics A Chapman & Hall/CRC g Statistics in the Social and Behavioral Sciences Series Age–Period–Cohort Models: Approaches and Analyses with Aggregate Data e presents an introduction to the problems and strategies for modeling age, period, – and cohort (APC) effects for aggregate-level data. These strategies include P e constrained estimation, the use of age and/or period and/or cohort characteristics, Age–Period–Cohort r estimable functions, variance decomposition, and a new technique called the i o s-constraint approach. d Models After a general and wide-ranging introductory chapter, the book explains the – identification problem from algebraic and geometric perspectives and discusses C constrained regression. It then covers important strategies that provide informa- o tion that does not directly depend on the prior constraints used to identify the h Approaches and Analyses APC model. The final chapter presents a specific empirical example showing that o a combination of the approaches can make a compelling case for particular APC r with Aggregate Data t effects. M Features o • Examines APC models that use aggregate-level data, such as uniform crime d reports, vital statistics, and census data e • Provides an introduction to the literature from the classic perspective l • Explains why researchers are interested in the separate effects of age s controlling for period and cohort, period controlling for age and cohort, and cohort controlling for period and age • Describes the geometry underlying the underidentification of the APC model • Describes how to identify APC models using characteristics associated with age groups, periods, and cohorts • Presents a unified approach to estimable functions in the APC context • Introduces a new constrained estimation technique, the s-constraint approach • Emphasizes the need for using substantive knowledge and theory when O working with APC analyses ’B r This book incorporates several APC approaches into one resource, emphasizing ie n both their geometry and algebra. This integrated presentation helps you effectively judge the strengths and weaknesses of the methods, which should lead to better future research and better interpretation of existing research. Robert M. O’Brien K15175 K15175_cover.indd 1 7/11/14 12:20 PM Age–Period–Cohort Models Approaches and Analyses with Aggregate Data Chapman & Hall/CRC Statistics in the Social and Behavioral Sciences Series Series Editors Jeff Gill Steven Heeringa Washington University, USA University of Michigan, USA Wim van der Linden J. Scott Long CTB/McGraw-Hill, USA Indiana University, USA Tom Snijders Oxford University, UK University of Groningen, NL Aims and scope Large and complex datasets are becoming prevalent in the social and behavioral sciences and statistical methods are crucial for the analysis and interpretation of such data. This series aims to capture new developments in statistical methodology with particular relevance to applications in the social and behavioral sciences. It seeks to promote appropriate use of statistical, econometric and psychometric methods in these applied sciences by publishing a broad range of reference works, textbooks and handbooks. The scope of the series is wide, including applications of statistical methodology in sociology, psychology, economics, education, marketing research, political science, criminology, public policy, demography, survey methodology and official statistics. The titles included in the series are designed to appeal to applied statisticians, as well as students, researchers and practitioners from the above disciplines. The inclusion of real examples and case studies is therefore essential. Chapman & Hall/CRC Statistics in the Social and Behavioral Sciences Series Age–Period–Cohort Models Approaches and Analyses with Aggregate Data Robert M. O’Brien University of Oregon Eugene, USA CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2015 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20140620 International Standard Book Number-13: 978-1-4665-5154-1 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information stor- age or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copy- right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro- vides licenses and registration for a variety of users. For organizations that have been granted a photo- copy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Contents Preface ......................................................................................................................ix Author ......................................................................................................................xi 1. Introduction to the Age, Period, and Cohort Mix ....................................1 1.1 Introduction ...........................................................................................1 1.2 Interest in Age, Period, and Cohort ....................................................2 1.2.1 Age Alone..................................................................................2 1.2.2 Period Alone .............................................................................3 1.2.3 Cohort Alone ............................................................................3 1.2.4 Age– Period Explanation .........................................................4 1.2.5 Age– Cohort Explanation ........................................................4 1.2.6 Age– Period– Cohort Explanation ...........................................4 1.3 Importance of Cohorts .........................................................................5 1.3.1 Life Table ...................................................................................6 1.3.2 Lexis Diagram and the Coding of Cohorts ..........................8 1.3.3 Frost’s Paper ............................................................................11 1.3.4 Cohorts as Engines of Social Change .................................14 1.3.5 Concluding Remarks .............................................................15 1.4 Plan for the Book .................................................................................15 References .......................................................................................................19 2. Multiple Classification Models and Constrained Regression ............21 2.1 Introduction .........................................................................................21 2.2 Linearly Coded Age– Period– Cohort (APC) Model .......................22 2.3 Categorically Coded APC Model ......................................................24 2.4 Generalized Linear Models ...............................................................29 2.5 Null Vector ...........................................................................................30 2.6 Model Fit ...............................................................................................32 2.7 Solution Is Orthogonal to the Constraint ........................................32 2.8 Examining the Relationship between Solutions ............................33 2.9 Differences between Constrained Solutions as Rotations of Solutions ...............................................................................................41 2.10 Solutions Ignoring One or More of the Age, Period, or Cohort Factors ......................................................................................43 2.11 Bias: Constrained Estimates and the Data Generating Parameters ............................................................................................47 2.12 Unbiased Estimation under a Constraint ........................................49 2.13 A Plausible Constraint with Some Extra Empirical Support ........50 2.14 Conclusions ..........................................................................................54 v vi Contents Appendix 2.1: Dummy Variable and Effect Coding ................................55 Appendix 2.2: Determining Null Vectors for Effect and Dummy Variable Coded Variables ...................................................................56 Appendix 2.3 Constrained Estimates as Unbiased Estimates ...............57 References .......................................................................................................58 3. Geometry of Age– Period– Cohort (APC) Models and Constrained Estimation...............................................................................59 3.1 Introduction .........................................................................................59 3.2 General Geometric View of Rank Deficient by One Models ........60 3.3 Generalization to Systems with More Dimensions ........................67 3.4 APC Model with Linearly Coded Variables ....................................68 3.4.1 Age, Period, and Cohort as Continuous Variables: A Concrete Example ..................................................................69 3.4.2 Geometry of Age, Period, and Cohort for Linearly Coded Effects ..........................................................................70 3.5 Equivalence of the Geometric and Algebraic Solutions ................76 3.6 Geometry of the Multiple Classification Model .............................77 3.7 Distance from Origin and Distance along the Line of Solutions ...79 3.8 Empirical Example: Frost’s Tuberculosis Data ................................80 3.9 Summarizing Some Important Features from the Geometry of APC Models .....................................................................................83 3.9.1 Solutions Lie on a Line in Multidimensional Space .........83 3.9.2 Distances as Geometric Insights ..........................................84 3.9.3 Understanding How Constrained Regression Solves the Rank Deficient Case ........................................................84 3.10 Problem with Mechanical Constraints ............................................85 3.11 Discussion ............................................................................................88 Appendix 3.1 ...................................................................................................89 References .......................................................................................................90 4. Estimable Functions Approach ..................................................................93 4.1 Introduction .........................................................................................93 4.2 Estimable Functions ...........................................................................94 4.3 l′sv Approach for Establishing Estimable Functions in Age– Period– Cohort (APC) Models ............................................................96 4.4 Some Examples of Estimable Functions Derived Using the l′sv Approach .......................................................................................99 4.4.1 Effect Coefficients ..................................................................99 4.4.2 Second Differences ................................................................99 4.4.3 Relationships between Slopes ............................................101 4.4.4 Change of Slope within Factors .........................................103 4.4.5 Deviations from Linearity ..................................................103 4.4.6 Predicted Values of y ...........................................................104 Contents vii 4.5 Comments on the l′sv Approach .....................................................105 4.6 Estimable Functions with Empirical Data .....................................106 4.7 More Substantive Examination of Differences of Male and Female Lung Cancer Mortality Rates ............................................110 4.8 Conclusions ........................................................................................112 Appendix 4.1 .................................................................................................113 References .....................................................................................................115 5. Partitioning the Variance in Age– Period– Cohort (APC) Models ....117 5.1 Introduction .......................................................................................117 5.2 Age– Period– Cohort Analysis of Variance (APC ANOVA) Approach to Attributing Variance ..................................................118 5.3 APC Mixed Model ............................................................................122 5.4 Hierarchical APC Model ..................................................................133 5.5 Empirical Example Using Homicide Offending Data .................136 5.5.1 Applying the APC ANOVA Approach .............................136 5.5.2 Applying the APCMM Approach .....................................143 5.6 Conclusions ........................................................................................146 References .....................................................................................................148 6. Factor- Characteristic Approach ...............................................................151 6.1 Introduction .......................................................................................151 6.2 Characteristics for One Factor .........................................................152 6.2.1 Basic Model ...........................................................................152 6.2.2 Problem of Specifying the Linear Relationship ..............154 6.3 Characteristics for Two or More Factors ........................................156 6.4 Variance Decomposition for Factors and for Factor Characteristics ...................................................................................157 6.5 Empirical Examples: Age– Period- Specific Suicide Rates and Frequencies ........................................................................................158 6.6 Age– Period– Cohort Characteristics (APCC) Analysis of Suicide Data with Two Cohort Characteristics .............................163 6.7 Age – Cohort– Period Characteristics (ACPC) Analysis of the Suicide Data with Two Period Characteristics ..............................166 6.8 Age– Period– Characteristics– Cohort Characteristics Model ......169 6.9 Approaches Based on Factor Characteristics and Mechanism ...171 6.10 Additional Features and Analyses of Factor- Characteristic Models ................................................................................................173 6.11 Conclusions ........................................................................................173 References .....................................................................................................175 7. Conclusions: An Empirical Example ......................................................177 7.1 Introduction .......................................................................................177 7.2 Empirical Example: Homicide Offending .....................................178 viii Contents 7.2.1 Unique Variance and Deviations from Linearity ............180 7.2.2 Constrained Regression Using the s- Constraint Approach ...............................................................................183 7.2.3 Estimating the Homicide Offending Model with Cohort Characteristics .........................................................190 7.2.4 Conclusions for the Homicide Rate Analysis ..................196 7.3 Conclusions ........................................................................................197 References .....................................................................................................199

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.