AEROTHERMODYNAMICS OF TURBOMACHINERY Aerothermodynamics of Turbomachinery: Analysis and Design Naixing Chen © 2010 John Wiley & Sons (Asia) Pte Ltd. ISBN: 978-0-470-82500-6 AEROTHERMODYNAMICS OF TURBOMACHINERY ANALYSIS AND DESIGN Naixing Chen InstituteofEngineering Thermophysics, Chinese AcademyofSciences, China Copyright(cid:1)2010 JohnWiley&Sons(Asia)PteLtd,2ClementiLoop,#02-01, Singapore129809 VisitourHomePageonwww.wiley.com AllRightsReserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystemortransmittedin anyformorbyanymeans,electronic,mechanical,photocopying,recording,scanning,orotherwise,exceptas expresslypermittedbylaw,withouteitherthepriorwrittenpermissionofthePublisher,orauthorizationthrough paymentoftheappropriatephotocopyfeetotheCopyrightClearanceCenter.Requestsforpermissionshouldbe addressedtothePublisher,JohnWiley&Sons(Asia)PteLtd,2ClementiLoop,#02-01,Singapore129809, tel:65-64632400,fax:65-64646912,email:[email protected]. Designationsusedbycompaniestodistinguishtheirproductsareoftenclaimedastrademarks.Allbrandnames andproductnamesusedinthisbookaretradenames,servicemarks,trademarksorregisteredtrademarksoftheir respectiveowners.ThePublisherisnotassociatedwithanyproductorvendormentionedinthisbook.Alltrademarks referredtointhetextofthispublicationarethepropertyoftheirrespectiveowners. Thispublicationisdesignedtoprovideaccurateandauthoritativeinformationinregardtothesubjectmattercovered. ItissoldontheunderstandingthatthePublisherisnotengagedinrenderingprofessionalservices.Ifprofessional adviceorotherexpertassistanceisrequired,theservicesofacompetentprofessionalshouldbesought. OtherWileyEditorialOffices JohnWiley&Sons,Ltd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK JohnWiley&SonsInc.,111RiverStreet,Hoboken,NJ07030,USA Jossey-Bass,989MarketStreet,SanFrancisco,CA94103-1741,USA Wiley-VCHVerlagGmbH,Boschstrasse12,D-69469Weinheim,Germany JohnWiley&SonsAustraliaLtd,42McDougallStreet,Milton,Queensland4064,Australia JohnWiley&SonsCanadaLtd,5353DundasStreetWest,Suite400,Toronto,ONT,M9B6H8,Canada Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynotbeavailable inelectronicbooks. LibraryofCongressCataloging-in-PublicationData Chen,Naixing,1933- Aerothermodynamicsofturbomachinery:analysisanddesign/NaixingChen. p.cm. Includesbibliographicalreferencesandindex. ISBN978-0-470-82500-6(cloth) 1. Turbomachines–Aerodynamics.2. Turbomachines–Designandconstruction. I.Title. TJ267.C442010 621.406–dc22 2010000093 ISBN978-0-470-82500-6(HB) Typesetin10/12ptTimesbyThomsonDigital,Noida,India. PrintedandboundinSingaporebyMarkonoPrintMediaPteLtd,Singapore. Thisbookisprintedonacid-freepaperresponsiblymanufacturedfromsustainableforestryinwhichatleasttwotrees areplantedforeachoneusedforpaperproduction. Contents Foreword xv Preface xvii Acknowledgments xix Nomenclature xxi 1 Introduction 1 1.1 IntroductiontotheStudyoftheAerothermodynamicsofTurbomachinery 1 1.2 BriefDescriptionoftheDevelopmentoftheNumericalStudyofthe AerothermodynamicsofTurbomachinery 2 1.3 Summary 6 FurtherReading 7 2 GoverningEquationsExpressedinNon-OrthogonalCurvilinear CoordinatestoCalculate3DViscousFluidFlowinTurbomachinery 9 2.1 Introduction 9 2.2 AerothermodynamicsGoverningEquations(Navier–StokesEquations) ofTurbomachinery 10 2.3 ViscousandHeatTransferTermsofEquations 11 2.3.1 ViscousStressTensor 12 2.3.2 StrainTensor 13 2.3.3 ViscousForce 14 2.3.4 RatesofWorkDonebytheViscousStressesand DissipationFunction 14 2.3.5 HeatTransferTerm 15 2.4 ExamplesofSimplificationofViscousandHeatTransferTerms 15 2.4.1 Three-DimensionalFlowinTurbomachineryExpressed byUsingArbitraryNon-OrthogonalCoordinates 15 2.4.2 S1Stream-SurfaceFlow 17 2.4.3 S2Stream-SurfaceFlow 17 2.4.4 AnnulusWallBoundaryLayer 17 2.4.5 Three-DimensionalBoundaryLayeronRotatingBladeSurface 19 2.5 TensorFormofGoverningEquations 20 2.5.1 ContinuityEquation 20 2.5.2 MomentumEquation 20 vi Contents 2.5.3 EnergyEquation 21 2.5.4 EntropyEquation 21 2.6 IntegralFormofGoverningEquations 21 2.6.1 ContinuityEquation 21 2.6.2 MomentumEquation 21 2.6.3 EnergyEquation 21 2.7 ACollectionoftheBasicRelationshipsforNon-OrthogonalCoordinates 22 2.8 Summary 24 3 IntroductiontoBoundaryLayerTheory 25 3.1 Introduction 25 3.2 GeneralConceptsoftheBoundaryLayer 25 3.2.1 NatureofBoundaryLayerFlow 25 3.2.2 BoundaryLayerThicknesses 27 3.2.3 TransitionoftheBoundaryLayerRegime 29 3.2.4 BoundaryLayerSeparation 30 3.2.5 ThermalBoundaryLayer 32 3.3 Summary 35 4 NumericalSolutionsofBoundaryLayerDifferentialEquations 37 4.1 Introduction 37 4.2 BoundaryLayerEquationsExpressedinPartialDifferentialForm 37 4.2.1 Two-DimensionalLaminarBoundaryLayerEquations 37 4.2.2 LaminarBoundaryLayerEquationsofAxisymmetricalFlow 38 4.2.3 TurbulentBoundaryLayerEquations 39 4.2.4 BoundaryConditionsofSolution 40 4.3 NumericalSolutionoftheBoundaryLayerDifferentialEquations foraCascadeontheStreamSurfaceofRevolution 41 4.3.1 BoundaryLayerEquationsofS1StreamSurfaceFlow ofRevolutionandTheirSolution 41 4.3.2 TurbulenceModeling 44 4.4 CalculationResultsandValidations 45 4.4.1 LaminarBoundaryLayerCalculationExample 45 4.4.2 TurbulentBoundaryLayerwithFavorablePressureGradient 45 4.4.3 TurbulentBoundaryLayerwithAdversePressureGradient (LudweigandTillmann) 46 4.4.4 TurbulentBoundaryLayerwithFavorablePressureGradient(Bell) 47 4.4.5 TurbulentBoundaryLayerwithAdversePressureGradient (SchubauerandSpangenberg) 48 4.5 ApplicationtoAnalysisofthePerformanceofTurbomachinery BladeCascades 49 4.5.1 BoundaryLayerMomentumThickness(Bammert’sExperiment) 49 4.5.2 LaminarBoundaryLayerPrediction(TurbineandCompressor BladeProfiles) 49 4.5.3 Laminar-TurbulentBoundaryLayerPrediction 51 4.5.4 TurbulentViscosityPrediction 52 Contents vii 4.5.5 StaggerAngleEffect(C4) 53 4.5.6 EffectofIncidenceAngleonBladeLossCoefficient(C4) 55 4.5.7 EffectofReynoldsNumberontheLossCoefficientof CompressorBladeCascades(C4) 55 4.5.8 EffectofStreamSheetThicknessonBoundaryLayer MomentumThickness(TurbineBlade) 55 4.6 Summary 57 5 ApproximateCalculationsUsingIntegralBoundaryLayerEquations 59 5.1 Introduction 59 5.2 IntegralBoundaryLayerEquations 59 5.2.1 BoundaryLayerMomentumIntegralEquationofthe FlowontheStreamSurfaceofRevolution 59 5.2.2 MomentumandEnergyIntegralEquationsoftheBoundary LayerforDifferentFlowCases 62 5.3 GeneralizedMethodforApproximateCalculationofthe BoundaryLayerMomentumThickness 64 5.4 LaminarBoundaryLayerMomentumIntegralEquation 66 5.5 TransitionalBoundaryLayerMomentumIntegralEquation 68 5.5.1 VelocityDistributionintheBoundaryLayerRegion 68 5.5.2 WallShearStressPredictionintheTransitionalRegion 68 5.5.3 AnApproximateMomentumIntegralEquationforthe TransitionalRegion 70 5.6 TurbulentBoundaryLayerMomentumIntegralEquation 70 5.6.1 TheLawofVelocityDistribution 71 5.6.2 ShapeParameters,HandH 72 20 5.6.3 WallShearStressCoefficient 72 5.6.4 BoundaryLayerMomentumThicknessPrediction 75 5.6.5 AnApproximateFormulaforPredictionoftheShape ParameterHoftheTurbulentBoundaryLayer 78 5.6.6 EmpiricalConstantsfortheGeneralizedMethodforApproximate CalculationofTurbulentBoundaryLayerMomentum ThicknessProposedbyDifferentAuthors 80 5.7 CalculationofaCompressibleBoundaryLayer 81 5.7.1 CompressibilityTransformationoftheIntegralEquation oftheBoundaryLayer 81 5.7.2 CalculationMethodforaCompressibleBoundaryLayer WithoutHeatTransfer 83 5.7.3 BoundaryLayerCalculationMethodforaBladeCascade ontheStreamSurfaceofRevolution 84 5.8 Summary 84 6 ApplicationofBoundaryLayerTechniquestoTurbomachinery 87 6.1 Introduction 87 6.2 FlowRateCoefficientandLossCoefficientofTwo-Dimensional BladeCascades 87 viii Contents 6.2.1 FlowRateCoefficientofaBladeCascade 88 6.2.2 LossCoefficientofaBladeCascade 89 6.3 StudiesontheVelocityDistributionsAlongBladeSurfacesandCorrelation AnalysisoftheAerodynamicCharacteristicsofPlaneBladeCascades 92 6.3.1 InfluenceofBladeSurfaceVelocityDistributiononBoundary LayerMomentumLossThickness 92 6.3.2 TheLossCoefficientofaTheoreticalOptimumPlaneTurbine ProfileCascade 93 6.3.3 CorrelationsoftheLossCoefficientofaPlaneTurbineProfile Cascade(UsingtheGeometricalConvergenceGradientof BladePassage,G) 94 6.3.4 CorrelationsoftheLossCoefficientofaPlaneTurbine ProfileCascade(UsingtheConvergenceGradientofBlade PassageG**ExpressedbyFlowAngles) 97 6.3.5 CorrelationsoftheLossCoefficientofaPlaneCompressor BladeCascade(UsingDiffusionFactorD) 99 6.4 Summary 101 7 StreamFunctionMethodsforTwo-andThree-DimensionalFlow ComputationsinTurbomachinery 103 7.1 Introduction 103 7.2 Three-DimensionalFlowSolutionMethodswithTwoKinds ofStreamSurfaces 104 7.2.1 Three-DimensionalSolution 104 7.2.2 Quasi-Three-DimensionalSolution 106 7.3 Two-StreamFunctionMethodforThree-DimensionalFlowSolution 106 7.3.1 CoordinateSystemandMetricalTensors 106 7.3.2 Three-DimensionalGoverningEquationsofSteadyInviscid FluidFlow 109 7.3.3 DefinitionofStreamFunctionsandCoordinate-Transformation 110 7.3.4 BoundaryConditionsandCalculationExamples 112 7.4 StreamFunctionMethodsforTwo-DimensionalViscousFluid FlowComputations 118 7.4.1 Navier–StokesEquationSolutionforRotatingBlade CascadeFlowonanS1StreamSurfaceofRevolution 119 7.4.2 BoundaryConditions 122 7.4.3 SolutionProcedure 123 7.4.4 CalculationExamples 123 7.5 StreamFunctionMethodforNumericalSolutionofTransonic BladeCascadeFlowontheStreamSurfaceofRevolution 127 7.5.1 StreamFunctionEquationandArtificialCompressibility 127 7.5.2 Stone’sStronglyImplicitProcedure(SIP)and itsImprovement 128 7.5.3 NumericalSolutionProcedure 129 7.5.4 CalculationExamples 130 7.6 FiniteAnalyticNumericalSolutionMethod(FASM)for SolvingtheStreamFunctionEquationofBladeCascadeFlow 131 Contents ix 7.6.1 GoverningEquationanditsSolution 132 7.6.2 LinearizationofEquationSolutionforaRectangularRegion 133 7.6.3 Non-OrthogonalCoordinateSystemandDiscretized DifferenceEquation 134 7.6.4 AdaptabilityoftheCoefficientstoCompressibility 136 7.6.5 NumericalSolutionProcedure 137 7.6.6 CalculationExamples 137 7.7 Summary 140 Appendix7.AFormulasforEstimatingtheCoefficientsofthe DifferentialEquationsofthe3DTwo-StreamFunction CoordinateMethod 141 8 PressureCorrectionMethodforTwo-Dimensionaland Three-DimensionalFlowComputationsinTurbomachinery 145 8.1 Introduction 145 8.2 GoverningEquationsofThree-DimensionalTurbulentFlowandthe PressureCorrectionSolutionMethod 146 8.2.1 GoverningEquations 146 8.2.2 Two-Equation(k–e)TurbulenceModel 148 8.2.3 CoordinateTransformationandGeneralizedFormof GoverningEquationswithBody-FittedCoordinatesforCalculating OrthogonalCoordinateComponentsoftheVelocityVector 150 8.2.4 DiscretizedAlgebraicEquations 151 8.2.5 BoundaryConditionsandWall-FunctionTreatment 156 8.3 Two-DimensionalTurbulentFlowCalculationExamples 157 8.3.1 ASymmetricAirfoil 157 8.3.2 LowSpeedSubsonicTurbineBladeCascade(NACATN-3802) 159 8.3.3 TurbineBladeCascade(VKI-LS59) 162 8.3.4 TransonicTurbineBladeCascadewithLargeRound LeadingEdges(T12) 164 8.3.5 SupersonicTurbineBladeCascade 165 8.3.6 CompressorBladeCascade(T1) 166 8.4 Three-DimensionalTurbulentFlowCalculationExamples 169 8.4.1 LinearTurbineBladeCascade 173 8.4.2 AnnularTurbineBladeCascade 175 8.4.3 HighTurningTurbineBladeCascadeforanAnnular BladeCascadeWindTunnel 181 8.4.4 LinearCompressorCascade 183 8.4.5 BUAASingleRotorTestCompressor 185 8.4.6 CentrifugalImpeller 192 8.5 Summary 198 9 Time-MarchingMethodforTwo-Dimensionaland Three-DimensionalFlowComputationsinTurbomachinery 199 9.1 Introduction 199 9.2 GoverningEquationsofThree-DimensionalViscousFlow inTurbomachinery 201 x Contents 9.2.1 RelativeMotioninTurbomachinery 201 9.2.2 GoverningEquationsWritteninDifferentialEquationFormulation 201 9.2.3 GoverningEquationsWritteninIntegralForm 204 9.3 SolutionMethodBasedonMulti-StageRunge-Kutta Time-MarchingScheme 205 9.3.1 DiscretizationofGoverningEquations 205 9.3.2 MethodforPredictionofParametersonBoundarySurfaces andFluxes 205 9.3.3 AdaptiveDissipationTerm 206 9.3.4 ModifiedMulti-StageRunge–KuttaTime-MarchingScheme 208 9.3.5 TurbulenceModelingandWallFunction 213 9.3.6 Multi-GridScheme 215 9.4 Two-DimensionalTurbulentFlowExamplesCalculatedbythe Multi-StageRunge–KuttaTime-MarchingMethod 216 9.4.1 AGridGenerationMethodBasedonAnalogy withtheStaff–SpringSystem 216 9.4.2 TurbineBladeCascade(VKI-LS59) 220 9.4.3 TransonicSteamTurbineBladeCascade(VKI-LS59ST) 221 9.4.4 SupersonicInletFlowCompressorBladeCascade 225 9.5 Three-DimensionalFlowExamplesCalculatedbythe Multi-StageRunge–KuttaTime-MarchingMethod 226 9.5.1 NumericalSolutionforThree-DimensionalInviscidFlow inaTransonicSingleRotorCompressor 227 9.5.2 NumericalSolutionforThree-DimensionalTurbulentFlow inaSingleRotorCompressor 232 9.5.3 NumericalSolutionforThree-DimensionalTurbulentFlow inaTurbineStage 233 9.5.4 Three-DimensionalTurbulentFlowinaCentrifugal ImpellerbytheModifiedMulti-StageRunge–Kutta Time-MarchingMethod 238 9.6 Summary 249 10 NumericalStudyontheAerodynamicDesignofCircumferential- andAxial-LeanedandBowedTurbineBlades 251 10.1 Introduction 251 10.2 CircumferentialBlade-BowingStudy 252 10.2.1 CircumferentialBlade-BowingProcedure 252 10.2.2 EffectonthePressureDistributionsoftheSurfaces ofRevolutionatDifferentSpanHeights 255 10.2.3 EffectonParameterContoursoftheMeridianSurfaces (x2 ¼const) 257 10.2.4 EffectonPressureContoursoftheCoordinateSurfaces (x1 ¼const) 258 10.2.5 TheBowingEffectforRestrainingBoundary-Layer SeparationfromtheEnd-Wall 260 Contents xi 10.2.6 CircumferentialBowingEffectonPitch-Wise Mass-AveragedParametersatStation3 261 10.2.7 SuggestionofApplyingaNewCircumferentially BowedBlading 266 10.3 AxialBlade-BowingStudy 266 10.3.1 AxialBlade-BowingProcedure 266 10.3.2 EffectonStaticPressureContoursoftheMeridianSurfaces (x2 ¼const) 268 10.3.3 EffectonPressureDistributionsoftheSurfacesof RevolutionatDifferentSpanHeights 269 10.3.4 EffectonStaticPressureContoursoftheSurfacesofx1 ¼const 271 10.3.5 EffectonCircumferentiallyAveragedParametersatthe VerticalMeasuringPlane(JustattheExitfromtheBlade Channel,thatis,StationNo.3) 271 10.3.6 AxialBowingEffectonSecondaryFlow 273 10.3.7 AxialBowingEffectonGlobalAdiabaticEfficiencyand FlowRate 275 10.4 CircumferentialBlade-BowingStudyofTurbineNozzleBlade RowwithLowSpan-DiameterRatio 277 10.4.1 LeaningEffectonAdiabaticEfficiencyandExitFlowAngle 279 10.4.2 GenerationofaRadialStackingFormClosetoOptimal 281 10.4.3 AnAttemptataBladeModification 283 10.5 Summary 286 11 NumericalStudyonThree-DimensionalFlowAerodynamics andSecondaryVortexMotionsinTurbomachinery 287 11.1 Introduction 287 11.2 Post-ProcessingAlgorithms 288 11.2.1 RelativeVelocityVectorSchemes,SurfaceTraceand VolumeTrace 288 11.2.2 VortexIntensity 289 11.2.3 EntropyIncrement 289 11.2.4 AnApproximateFormulaforPredictingtheSecondaryFlow VelocityVector 289 11.3 AxialTurbineSecondaryVortices 289 11.3.1 SaddlePointandHorseshoeVortex 290 11.3.2 BowingEffectontheLocationoftheSaddlePoint 290 11.3.3 PassageVortex 294 11.3.4 BowingEffectontheDevelopmentofthePassageVortex 295 11.3.5 BowingEffectonthePassageVortexforDifferent IncidenceAngles 296 11.3.6 CornerVortexinStraightandSaber-ShapedBladeCascades 300 11.3.7 TipClearanceVortex 301 11.3.8 BladeBowingEffectinBladeswithTipClearance 305 11.3.9 MechanismofLossReductionbyBowedBlades 306