Energetic and Other Quantitative Aspects of Microbial Hydrocarbon Utilization: An Introduction F. Widdel and F. Musat Abstract Hydrocarbonsrepresent“energy-rich”growthsubstratesforaerobicmicroorgan- ismsandinprincipleallowhighgrowthyields.Incontrast,theenergygainwith hydrocarbonsinmanyanaerobicmicroorganismsisverylow.Themaximumgain of energy per mol of hydrocarbon degraded in the catabolism is predicted from calculated ΔG values. Some anaerobic degradation reactions of hydrocarbons withverylow-energygainaswellasanaerobicactivationreactionsofhydrocar- bonsdeserveparticularattentionfromabioenergeticpointofview. Contents 1 Introduction................................................................................... 2 2 SomeBasicThermodynamicAspectsofHydrocarbons..................................... 2 3 EnergeticsofHydrocarbonUtilizationbyMicroorganisms................................. 8 3.1 CatabolicNetReactionsofHydrocarbonsfromtheEnergeticPerspective........... 8 3.2 HydrocarbonActivationfromtheEnergeticPerspective.............................. 13 4 QuantitativeAspectsofCellSynthesis...................................................... 18 4.1 ATPandGrowthYields................................................................ 18 4.2 RequirementforMinerals(N,P,Fe)................................................... 25 5 ResearchNeeds............................................................................... 27 Appendix.......................................................................................... 28 References........................................................................................ 39 F.Widdel(*) MaxPlanckInstituteforMarineMicrobiology,Bremen,Germany e-mail:[email protected] F.Musat UFZ-HelmholtzCentreforEnvironmentalResearch,D-04318Leipzing,Germany e-mail:[email protected] #SpringerInternationalPublishingAG2016 1 F.Rojo(ed.),AerobicUtilizationofHydrocarbons,OilsandLipids,Handbookof HydrocarbonandLipidMicrobiology,DOI10.1007/978-3-319-39782-5_2-1 2 F.WiddelandF.Musat 1 Introduction The study of microbial growth with hydrocarbons and their degradation often gets intoenergeticaspects,eventhoughataglancethemetabolismofhydrocarbonsisnot basicallydifferentfromthatofotherorganiccompounds.Theoverallmetabolismin achemotrophicorganismfollowstheuniversalbifurcatecarbonflow:Onepartofthe carbonsubstratetogetherwithsourcesofotherelements(N,P,S,Fe,etc.)isusedfor synthesis of cell components, a process referred to as anabolism (synthetic metab- olism, assimilation). The anabolic “upgrading” of the substrate requires and dissi- patesmuchenergy,whichisusuallyprovidedintheformofATPandderivedfrom anotherpartofthecarbonsubstrate.Thispartofthesubstratenecessarilyundergoes degradation; the degradative substrate flow is referred to as catabolism (energy metabolism,dissimilation).Still,therearesomeenergeticpeculiaritiesinthemetab- olismofhydrocarbonswhichdeserveattention.(1)First,eventhoughflammability ofhydrocarbonsattheairimplies“energyrichness,”theyarenotenergyrichunder allcircumstances.Intheabsenceofoxygen,hydrocarbonsarelessenergyrichthan for instance the less flammable glucose. Whereas the latter provides energy for various modes of fermentative growth, fermentation of saturated, aromatic, and many other unsaturated nonaromatic hydrocarbons is energetically not feasible1; this is one reason why they tend to be preserved in deep reservoirs. (2) Second, hydrocarbons are chemically unreactive at room temperature. Their use in the metabolismhastobeginwithanactivationreaction,theintroductionofafunctional group,whichmayrequireand“waste”energyfromtheoverallenergybudgetofthe microorganism. Also energies of transition states in the activation reactions have been of interest for a mechanistic understanding. (3) Third, for the theoretical treatment of energy conservation with hydrocarbons as well as for the estimation ofmicrobialcellmassinvolvedinhydrocarbon(petroleum)bioremediation,growth yields(cellmassproducedperamountofhydrocarbonutilized)areofinterest.This chapter briefly addresses some of these energetic peculiarities and quantitative aspectsofhydrocarbonmetabolism(Fig.1). 2 Some Basic Thermodynamic Aspects of Hydrocarbons Hydrocarbons,themainconstituentsofoilandgas,arethemajorsourceofenergyin our industrialized society. A prominent property of hydrocarbons is thus their “energy richness.” More precisely, this term expresses that energy is released if theyareoxidizedwithoxygenandthattheamountofenergyreleasedperunitmass (thegravimetricenergydensity)ofaliquidorsolidhydrocarbonishigherthanthat from the oxidation of many other chemical compounds or elements (Appendix Table 5). In the case of gaseous hydrocarbons, a high volumetric energydensityis 1Afermentablehydrocarbonis,forinstance,theunsaturatedacetylene.Alsosomeotherunsaturated hydrocarbonsare,atleasttheoretically,fermentable. EnergeticandOtherQuantitativeAspectsofMicrobialHydrocarbon... 3 Cell synthesis m s NH+ oli 4 b HPO24– Ana Non- FeII, FeIII produc- tive Hydro- Activated Energy carbon product Energy A ox C at a b oli s m Oxidized form of A ox electron acceptor A Reduced form of Ared CO2 red electron acceptor Energy dissipation Fig.1 Themetabolismof hydrocarbons inchemotrophic microorganismsfollows theuniversal bifurcate substrate flow into cell synthesis and degradation. A peculiarity in comparison to the metabolismofmostnon-hydrocarbonsubstratesistheactivationwhichmayrequireanddissipate energy obvious if compared to that of other gases (Appendix Table 5). This “energy richness” is due to the high affinity of the two constituents, hydrogen and carbon, foroxygenandtotheabsenceofoxidizedcarbongroups(suchasC(cid:1)OHorC¼O groups). The low atomic masses of hydrogen and carbon2 is another factor that contributestothehighgravimetricenergydensity.Itisthehighgravimetricenergy density which, together with the abundance of hydrocarbons in the form of petro- leum, has made them ideal fuels for vehicles and aircrafts. Another technical advantageistheformationofvolatileproducts(CO ,H Ovapor). 2 2 Feasibilityandmaximumenergygainsofformulatedstoichiometricreactionsare expressedbytheirfreeenergychanges,theΔG-values.Ifareactionisfeasibleunder thegivenconditions(exergonicreaction),theΔG-valueisnegativebyconvention. A positive value necessarily indicates that the reaction can in principle not occur underthegivenconditions(endergonicreaction),andavalueofzeroindicatesthat reactants and products arein equilibrium. Most reactions inchemistry andbiology are associated with liberation of heat to the surroundings (exothermic reactions), 2H,1.008;C,12.011. 4 F.WiddelandF.Musat whichisexpressedbytheirheatorenthalpy3changes(ΔH-values).Somereactions consumeheatfromthesurroundings(endothermicreactions),andafewofsuchtype alsooccurinmicroorganisms.Freeenergyorenthalpychangesarecalculatedfrom free energies of formation (ΔG(cid:3), sometimes also termed G(cid:3)) or enthalpies of f f formation (ΔH(cid:3), sometimes also termed H(cid:3)), respectively, which are given for f f standard conditions4 and for which there is a broad data basis. Appendix Table 6 compiles the values under standard conditions for several hydrocarbons and a numberofothercompoundswhichoftenappearincatabolicreactions.Forareaction a Aþb B!c Cþd D (1) (with a, b, c, d being the stoichiometric factors), the standard free energy change (viz.,forallcompoundsatstandardconditions)isthedifference (cid:1) (cid:3) (cid:1) (cid:3) ΔG(cid:3) ¼ c ΔG(cid:3)Cþd ΔG(cid:3)D (cid:1) a ΔG(cid:3)Aþb ΔG(cid:3)B (2) f f f f Calculation of the free energy change ΔG for nonstandard activities (a, in case of gases termed fugacity; a must not be confused with the stoichiometric factor a) considers the “nonchemical” energy change associated with dilution or concentra- tion(“volumework”)ofeachcomponent.Thesearelogarithmicfunctionsinvolving thegasconstantandabsolutetemperature,thesumofwhichmodifiesthefreeenergy changeforstandardactivities,ΔGStandard,accordingto ac (cid:4)ad ΔG¼ΔGStandardþRTln C D (3) aa (cid:4)ab A B TinthisequationmustbethetemperatureforwhichtheunderlyingΔGStandardvalue hasbeengiven(viz.,usually298.15K),andΔGvaluesatothertemperaturescannot becalculatedbythisequation.5Theactivities(effectiveconcentrations)ofsolutes,a, canbeusuallysubstitutedwithacceptableprecisionbytheactualconcentrationsin moll(cid:1)1;similarly,thefugacities(effectivepressures)ofgasescanbesubstitutedby 3Heatchangeofreactionunderconstantpressure. 4T¼298:15Kð25(cid:3)CÞ;standardactivityofsolutes,a¼1;standard(partial)pressureofgases¼ 101kPa(standardfugacity¼1). 5ΔGStandardvaluesattemperaturesothertha(cid:4)n298(cid:5).15Kcanbecalculatedviatheintegrated“Delta- version”oftheGibbs-Helmholtzequation @ ΔG ¼ΔH:Assumingthattemperaturedependence @T T p T2 of ΔH within the range of physiologically relevant temperatures is negligible, the free energy changeattemperaturesotherthan298.15K(butatstandardactivities)is (cid:6) (cid:7) T T ΔGStandard ¼ ΔG(cid:3) þ 1(cid:1) ΔH(cid:3) T 298:15 298:15 ThesameresultisobtainedfromΔG¼ΔH(cid:1)TΔSSbyassumingthatΔHandΔSareessentially constantwithintherangeofphysiologicallyrelevanttemperatures. EnergeticandOtherQuantitativeAspectsofMicrobialHydrocarbon... 5 theirpressuresinatm,anotherwiseobsoleteunit.6Withsuchsimplification,aswell aswithR¼8:315(cid:5)10(cid:1)3kJK(cid:1)1mol(cid:1)1,T ¼ 298:15Kð25(cid:3)CÞ,thecommonuseof kJasenergyunit,andlnx¼2:303lgx,(3)convertsto ΔG¼ΔG(cid:3) þ5:71 lg½C(cid:6)c ½D(cid:6)dðat 298:15KÞ (4) ½A(cid:6)a ½B(cid:6)b Hydrocarbonsintheaqueoussurroundingsofmicroorganismscanbeoftenconsid- eredwithgoodapproximationtohavetheactivitiesoftheirgaseous,liquid,orsolid standardstates,viz.,a ¼1,or½Hydrocarbon(cid:6)¼1.Forinstance,ifagaseous Hydrocarbon hydrocarbon at standard pressure dissolves in water and reaches the dissolution equilibrium (ΔG of transfer ¼ 0), it is thermodynamically treated like the gas, eventhoughthedissolvedconcentrationisintherangeof10(cid:1)3M(AppendixFig.6). The same holds true for liquid hydrocarbons: Despitetheextremelylow saturation concentrationoflong-chainalkanesinwater,thehydrocarbondissolvedinwaterhas theactivity(strictlyspeakingthechemicalpotential)ofthepureliquidhydrocarbon phase. If inorganic (fully oxidized) Carbon is involved, also acid-base dissociation hastobeConsidered(AppendixFig.7). The free energy data (Appendix Table 6) reveal some basic and sometimes “counterintuitive”thermodynamicpropertiesofhydrocarbons.Manyhydrocarbons are metastable (thermodynamically unstable; ΔG(cid:3) positive) with respect to the f elements,eventhoughdecayintotheelementsisusually“kineticallyinhibited.”In the case of acetylene (ethyne), however, compression at room temperature can triggerthereleaseoftheenergyinaviolentdecayintotheelements.Forthisreason, compressedweldingacetyleneinsteelbottlesmustbestabilizedbyadsorptiontoa carrier such as acetone. But also hydrocarbons that are stable with respect to the elements (even the rather stable ethane) are metastable with respect to decay into nativecarbonandmethane,themoststablehydrocarbon: 2C H !C þ3CH ΔG2(cid:3) ¼6 (cid:1)43:G3rakpJhðitme olC H4Þ(cid:1)1 (5) 2 6 InthepresenceofCO orbicarbonate,evenmethaneismetastable: 2 CH þCO !2C þ2H O Δ4G(cid:3) ¼(cid:1)229:2kJGðmrapohlitCeH Þ(cid:1)12 (6) 4 CH þCO !2C þ2H O Δ4G(cid:3) ¼(cid:1)229:2kJGðmrapohlitCeH Þ(cid:1)12 (7) 4 6Theapparentcorrectnessoftheoldunitatmisduetothefactthatitisnumericallyequivalentwith standardfugacity ¼1.Activitiesandfugacitiesarebydefinitionwithoutunits,andtheformally correctapproximatedsubstitutionwoulda ¼ ½A(cid:6)Actual,etc.Here,theuseofthemodernunitPaor A ½A(cid:6)Standard kPafor[A],etc.iscoherent. 6 F.WiddelandF.Musat Nevertheless,formationofelementalcarbonbyreactions(5,6,and7)iskinetically strongly inhibited and has not been observed in abiotic or biotic systems at room temperature.Butoncetheelementhasbeenformedbygeothermalmetamorphismof buried biomass or petroleum (Tissot and Welte 1984), it is the thermodynamically stablespeciesofcarbonaslongasadditionalreducingoroxidizingcomponentsare absent.Inthepresenceofamildoxidant,nottheelementbutratherCO anditsionic 2 forms,HCO (cid:1)andCO 2(cid:1),arethethermodynamicallystableformsofcarbon.Other 3 3 forms or intermediate oxidation states (H C¼O,CO,HCOOH,C -compounds, 2 2 etc.), like all natural organic compounds, are metastable7 with respect to a conver- siontoCH ,CO andH O,evenwithoutinvolvementofanoxidantorreductant.If 4 2 2 on the other hand a reductant with negative enough redox potential is present, the only stable form of carbon is CH . Again, intermediate oxidation states (CH OH, 4 3 reduced C -compounds, etc.) are metastable. The stability “regions” of the men- 2 tionedcarbonspeciesareelegantlyillustratedinaplotoftheredoxpotentialversus thepH(E-pH-diagram,Pourbaixdiagram;Fig.2). Another thermodynamically interesting principle is revealed in the homologous series of n-alkanes. n-Alkanes become increasingly unstable with increasing chain length,whereastheheatofformationshowsanoppositetrend(Fig.3).8Theheatis the energy released during C(cid:1)H bond formation from the elements (even though such alkane formation is not observed in reality). Hence, the thermodynamically feasibledisintegrationofalong-chainalkaneintoitselementswouldconsumeheat: C H !16C þ17H 16 34 Graphite 2 ΔG(cid:3) ¼(cid:1)49:8kJðmolC H Þ(cid:1)1 (8) 16 34 ΔH(cid:3) ¼þ454:4kJðmolC H Þ(cid:1)1 16 34 This thermodynamically “allowed” cooling of the surroundings (and the system), which is a decrease in the entropy of the surroundings, is explained by the numer- ically higher entropy increase of the reacting system; the molecules of the gaseous H thatareformedinhighnumbercarryahighamountof“hiddenheat.”9Further- 2 more,the homologous n-alkaneseriesrevealsthe transition from gaseous to liquid hydrocarbons(n-butane/n-pentane),whichismirroredbyadiscontinuityoftheΔH(cid:3) f values.Thisisbecauseliquidpentanehas“givenoff”theheatofcondensationtothe surroundings (liquid n-pentane, the real standard state: ΔH(cid:3) ¼(cid:1)173kJmol(cid:1)1; f 7Theextremelylowhypotheticalequilibriumconcentrationsofthesespeciescanbecalculated. 8Linearityintheseriesofthehigheralkanesmaybea“pre-assumption”andbasisforcalculationof ΔG(cid:3)orΔH(cid:3)valuesofcompoundsinhomologousseriesviaincrementaladditions.Inthenumerous f f sources of thermodynamic data, the original basis underlying such data is often difficult to traceback. 9Also,thehighlyordered(“improbable”)structureofthelong-chainalkanecontributestothermo- dynamicinstability. EnergeticandOtherQuantitativeAspectsofMicrobialHydrocarbon... 7 0.4 Co (g) 2 0.2 HCO– 3 0.0 CO2– 3 C E –0.2 [V] –0.4 H2O H 2 CH (g) –0.6 4 –0.8 0 2 4 6 8 10 12 14 pH Fig.2 Stabilitydiagram(Pourbaixdiagram)ofcarbonspecies.Theequilibrium(borderline)redox potentialE(inV)asafunctionofpHwascalculatedfromΔG(cid:3) values(inJ)accordingtoE ¼ X X f ΔGof, ox(cid:1)nF ΔGof, red þ 0:0n592 lg∏∏aaox withn¼numberofelectrons;F¼ 96,485C red mol(cid:1)1; a¼activity. Πa includes the Hþ-activity, the negative logarithm of which is the ox pH.Activitiesorfugacities:CO ,CH ,1:0; HCO (cid:1) andCO 2(cid:1),10(cid:1)2 (black)or1.0(gray).The 2 4 3 3 borderlinesbetweenCO ðgÞ, HCO (cid:1)andCO 2(cid:1)intheirstandardstatesrepresentthepK values. 2 3 3 a NotethatthepK valueforCO (g)is7.8(verticalgrayline),whereasthatofCO (aq)is6.35(not a1 2 2 shownhere),themorecommonlyknownone.ThesystemH O/H (electrochemicallythesameas 2 2 2Hþ=H )isindicatedforcomparison 2 hypothetical gaseous standard state: ΔH(cid:3) ¼(cid:1)146kJmol(cid:1)1). The discontinuity f of ΔG(cid:3) is less pronounced. Liquid pentane as a highly volatile compound f (boilingpoint,36.2(cid:3)C)isalmostinequilibriumwiththegaseousstate(liquidn-pentane: ΔG(cid:3) ¼(cid:1)9:21kJmol(cid:1)1;hypotheticalgaseousstandardstate:ΔG(cid:3) ¼(cid:1)8:11kJmol(cid:1)1). f f 8 F.WiddelandF.Musat Fig.3 Freeenergyand C-Atoms enthalpy(heat)offormation 2 4 6 8 10 12 14 16 18 +100 ofalkanesfromC toC .The 1 18 freeenergyofformationof ΔGf° C includesaliteraturevalue 16 andthevalueextrapolatedin 0 thisgraph –100 –1] Gaesous Liquid Solid ol m J –200 k H° [f ΔHf° Δ or –300 ° Gf Δ –400 –500 –600 3 Energetics of Hydrocarbon Utilization by Microorganisms Thebiologicalutilizationofahydrocarboncanbeexaminedbioenergetically(1)on the level of the net reaction performed by a microorganism and (2) on the level of individual enzymatic reactions. Among the latter, those of hydrocarbon activation areusuallyofhighestinterestandthereforebrieflyaddressedinthisoverview. 3.1 Catabolic Net Reactions of Hydrocarbons from the Energetic Perspective TheΔGofareaction(the“system”)isthemaximumamountofenergythatasecond systemcantheoreticallyconserveviacouplingtothisreactionunderfullreversibil- ity. However, coupling can only proceed outside of the equilibrium, viz., if the overall reaction of the two systems is more or less irreversible and dissipates free energy. The actual amount of useful energy provided by the catabolic reactions is thereforealwayslessthanthecalculatedΔG.Thesubsequentanabolismwithmany highly irreversible reactions then dissipates most of the free energy. Table 1 lists generalized equations for the degradation of hydrocarbons and Table 2 several particular reactions with naturally important electron acceptors and the associated energychanges. EnergeticandOtherQuantitativeAspectsofMicrobialHydrocarbon... 9 Table 1 Generalized equations for the catabolism (dissimilation, degradation) of hydrocarbons withvariouselectronacceptorsandfortheanabolism(assimilation)ofhydrocarbonsintocellmass Catabolism 4C H þð4cþhÞO !4cCO þ2hH O c h 2 2 2 10C H þð8cþ2hÞNO (cid:1)þð8cþ2hÞHþ!10cCO þð4cþhÞN þð4cþ6hÞH O c h 3 2 2 2 C H þð4cþhÞFeðOHÞ þð3cþhÞCO !ð4cþhÞFeCO þð6cþ2hÞH Oa c h 3 2 3 2 8C H þð4cþhÞSO 2(cid:1)þð8cþ2hÞHþ!8cCO þð4cþhÞH Sþ4hH O c h 4 2 2 2 8C H þð8c(cid:1)2hÞH O!ð4c(cid:1)hÞCO þð4cþhÞCH c h 2 2 4 Anabolism 4C H þ hCO þ ð4c(cid:1)hÞH O!ð4cþhÞhCH Oi c h 2 2 2 d ¼0:133=ð4cþhÞmolg(cid:1)1 ass Y ¼ð4cþhÞ=0:133gmol(cid:1)1 ass 17C H þð4h(cid:1)cÞCO þð14c(cid:1)5hÞH O!ð4cþhÞC H O c h 2 2 4 7 3 d ¼0:165=ð4cþhÞmolg(cid:1)1 ass Y ¼ð4cþhÞ=0:165gmol(cid:1)1 ass 17C H þð4h(cid:1)cÞCO þð4cþhÞNH þð10c(cid:1)6hÞH O!ð4cþhÞC H O N c h 2 3 2 4 8 2 d ¼0:166=ð4cþhÞmolg(cid:1)1 ass Y ¼ð4cþhÞ=0:166gmol(cid:1)1 ass aBecausemanyreactionstakeplaceinenvironmentscontaininginorganiccarbon,reactionswith Fe(OH) areforconveniencewrittenwiththerelativelyinsolubleFeCO (siderite)asaproduct 3 3 The aerobic oxidation with O as electron acceptor provides biochemically the 2 highest amount of energy, methanogenic degradation the lowest. Reactions with (cid:1) NO orN OareevenmoreexergonicthanthosewithO (Table2includesmethane 2 2 2 oxidationwithnitriteasaninvestigatedexample;Ettwigetal.2008).However,there (cid:1) isnoevidencethatthehigherenergyavailablewithNO orN Oincomparisonto 2 2 O aselectronacceptorisconserved;biochemically,O allowsconservationofeven 2 2 more energy from the same amount of organic substrate. The theoretically higher energygainisdue tothe“extra energycontent”of NO (cid:1) andN Owithrespectto 2 2 O : 4NO (cid:1)þ4Hþ !2N þ3O þ2H O,ΔG(cid:3)0 ¼(cid:1)116kJðmolNO (cid:1)Þ(cid:1)1;2 2 2 2 2 2 2 N O!2N þO ,ΔG(cid:3) ¼(cid:1)104kJðmolN OÞ(cid:1)1. 2 2 2 2 One of the least exergonic catabolic reactions is the anaerobic oxidation of methane (Table 2). Under certain environmental conditions, the net free energy change under in situ concentrations of the reactants may be only around ΔG¼(cid:1) 20kJmolðCH Þ(cid:1)1(Nauhausetal.2002).Thefactthatthisminuteamountisfurther 4 shared between two organisms with different metabolism challenges the energetic understanding of energy conservation under “low-energy” conditions (viz., life at low chemical potential), a topic developed in the study of other syntrophic associ- ations(JacksonandMcInerney2002;Schink1997,2002;chapter▶Introductionto Microbial Hydrocarbon Production: Bioenergetics by McInerney et al. in this vol- ume).Anotheranaerobicreactionofahydrocarbonofthermodynamicinterestisthe 10 F.WiddelandF.Musat nstomethane changeofpermol(cid:3)Δb,c,Sbon(cid:1)(cid:1)11)JKmol drocarbo Entropyreactionhydrocar(cid:3)0ΔorS( (cid:1)243(cid:1)301(cid:1)73(cid:1)215(cid:1)723 1 (cid:1)57 18 (cid:1)310 117 115 (cid:1)375 236 232 y h of ol Thedegradation Enthalpychangeofreactionpermhydrocarbon,(cid:1)(cid:3)Δ1()HkJmol (cid:1)890.4(cid:1)903.0(cid:1)788(cid:1)993(cid:1)559(cid:1)20.9 (cid:1)33.5 (cid:1)11.3 (cid:1)1,560(cid:1)38 (cid:1)2 (cid:1)2,220(cid:1)46 6 s. n bo of or ofselectedhydrocar Freeenergychangereactionpermol(cid:3)Δb,Ghydrocarbon(cid:1)(cid:3)0Δ1()GkJmol (cid:1)d818.0(cid:1)d813.3(cid:1)766.2(cid:1)928.3(cid:1)d344(cid:1)d21.2 (cid:1)d,e16.5 (cid:1)d,e16.6 (cid:1)1,467(cid:1)73 (cid:1)36 (cid:1)2,108(cid:1)117 (cid:1)63 s n o cti a O dsomehypotheticalre 2HO2þþHHO2þðÞþ4Ng14HO22þðÞþ4Ng10HO22þ14HO2ðÞþHSaq2HO22ðÞþHSaqHO22(cid:1)þHSHO2 þ6HO2þðÞþ7HSaq12H22þðÞCOg2 þ4HO2þðÞþ5HSaq8HO22þðÞCOg2 ervedan aucts ðÞþOg2(cid:1)þCO3ðÞCOg2ðÞCOg2 FeCO3ðÞþOg2(cid:1)þCO3(cid:1)þCO3 ðÞCOg2ðÞCOg2ðÞCHg4 ðÞCOg2ðÞCOg2ðÞCHg4 ofobs Prod !C!H!5!3!8!C !H !H !4!8 !7 !3!6 !5 sticsmic Table2Thermodynamiccharacteriandcarbondioxideisoftenendother aReactants MethaneðÞþðÞg2OgCH42ðÞþðÞCHg2Og42(cid:1)þðÞþþg8NO8H5CH43(cid:1)þðÞþþg8NO8H3CH42ðÞþðÞþðÞg8FeOH7COgCH423(cid:1)þðÞþþ2gSO2HCH44(cid:1)þðÞþþ2CHgSOH44(cid:1)ðÞþ2CHgSO44 EthaneðÞþðÞ2CHg7Og262(cid:1)þðÞþþ24CHg7SO14H264ðÞþ4CHg2HO262 PropaneðÞþðÞCHg5Og382(cid:1)þðÞþþ22CHg5SO10H384ðÞþ2CHg2HO382n-Hexane