ebook img

Advances in QCD sum rule calculations PDF

0.14 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Advances in QCD sum rule calculations

Advances in QCD sum-rule calculations Dmitri Melikhov InstituteforHighEnergyPhysics,AustrianAcademyofSciences,Nikolsdorfergasse18,A-1050Vienna,Austria D.V.SkobeltsynInstituteofNuclearPhysics,M.V.LomonosovMoscowStateUniversity,Moscow,Russia 5 1 Abstract. WereviewtherecentprogressintheapplicationsofQCDsumrulestohadronpropertieswiththeemphasisonthe 0 followingselectedproblems:(i)developmentofnewalgorithmsfortheextractionofground-stateparametersfromtwo-point 2 correlators;(ii)formfactorsatlargemomentumtransfersfromthree-pointvacuum correlationfunctions;(iii)propertiesof n exotictetraquarkhadronsfromcorrelationfunctionsoffour-quarkcurrents. a Keywords: QCD,operatorproductexpansion,QCDsumrules J PACS: 11.55.Hx,12.38.Lg,14.40.Nd,03.65.Ge 6 2 INTRODUCTION ] h p Themethodofsumrulesis35yearsold.Inspiteofthisrespectableage,themethodisbeingpermanentlyenrichedby - newideasandnewcalculationsandremainsoneofthewidelyusedandcompetitivetoolsbothforthedeterminations p ofthefundamentalQCD parameters(e.g.,quarkmassesanda )andforthecalculationofhadronproperties.Inthis e s h talk we review the recentprogressin the applicationsof QCD sum rules to hadronpropertieswith the emphasison [ the selected topics: (i) sum rules for two-pointvacuum correlationfunctionsand leptonic decay constants of heavy mesons;(ii)sumrulesforthree-pointvacuumcorrelationfunctions,formfactorsandthree-mesoncouplings;(iii)sum 1 v rulesforexotictetraquarkstates. 9 QCD sum rules [1] (see also [2, 3] for further references) is one of the main analytic methods for the study of 1 hadronpropertiesfromthefield-theoreticGreenfunctions(correlators)infullQCD.Thecorrelatorsarecalculatedby 3 meansoftheWilsonianoperatorproductexpansion(OPE)whichprovidestherigorousframeworkfortheseparation 6 of long and shortdistances, in QCD being dominatedby nonperturbativeandperturbativephysics, respectively[4]. 0 TheOPEclearlyidentifies,e.g.,theoriginofchiralsymmetrybreakingandtheemergenceofhadronmasses,leadsto . 1 factorizationofcomplicatedamplitudesofhadroninteractionsatlargemomentumtransfers. 0 QCDsumrulesprovidehadronamplitudeswhichsatisfyallrigorouspropertiesimposedbyperturbativeQCDand, 5 • atthesametime,containnonperturbativecontributionsdeterminedinauniqueway.AsanOPE-basedmethod,QCD 1 sum rules are formulatedin the Euclideanregion.However,by combiningOPE with the knowledgeof the analytic : v structureoftheGreenfunctionsandresummationschemes,theanalyticcontinuationtotheMinkowskispacemaybe i X performed.In thisrespectQCD sum rulesmayhavea broaderrangeof applicabilitythanlattice QCD. Lastbutnot least,asananalyticmethod,QCDsumrulesprovidephysicsinsightsinthehadronstructure,whicharenoteasytoget r a fromthenumericalresultsoflatticeQCD. The method of QCD sum rules favourably compares with other analytic methods, such as effective theories or • functionalmethods:the methodof sum rulesis based onthe WilsonianOPE in fullQCD andthereforeinvolvesno otherimplicitassumptionsoftenpresentinotheranalyticmethod. a.OPEandthesumruleforthecorrelator ThebasicobjectinthemethodofQCDsumrules–aswellasinlatticeQCD–isthevacuum-to-vacuumcorrelator,i.e., thevacuumaverageoftheT-productofquarkandgluoncurrents.InlatticeQCD,onefindsthiscorrelatornumerically atlargevaluesoftheEuclideantimet .InthemethodofQCDsumrules,onecalculatesthecorrelatoranalyticallyas theTaylorexpansionint .Technically,oneconsidersaso-calledBorelizedcorrelator,i.e.appliestheBoreltransform totheFeynmandiagrams,writtenasspectralrepresentationsintheenergyvariables.TheinverseBorelmassparameter isrelatedtot .TheOPEprovidestheanalyticdoubleexpansionofthiscorrelatorinformofaperturbativelycalculable powerseriesinthestrongcouplingconstanta andinpowersoft ;the“powercorrections”—termsinvolvingpowers s oft —aregivenviacondensates,expectationvaluesofgauge-invariantoperatorsoverthephysicalvacuuminQCD; thesecondensatesdescribeinanunambiguouswaynonperturbativeQCDcontributions. Alternatively,onemayderivearepresentationfortheBorelizedcorrelatorintermsoftheintermediatehadronstates. ThetworepresentationsfortheBorelizedcorrelator—byOPEandbysumoverhadronstates—constitutethetwo sidesoftheQCDsumrule. b.Isolatingtheground-statecontributionfromtheBorelizedcorrelator Atlarget ,theground-statedominatesthecorrelatorwhichthusfullydeterminestheground-stateparameters.Inthe regionofsmallandintermediatet ,wherethetruncatedOPEgivesagooddescriptionofthecorrelator,excitedhadronic statesgivesizeablecontributions.Inordertogetridoftheexcitedstatesandtoisolatetheground-statecontribution from the correlator, one invokes the idea of quark–hadronduality [5–7]: the excited states are dual to high-energy partsofFeynmandiagramsofperturbativeQCD.Theground-statecontributionisthenequaltothe“dualcorrelator” –thecorrelatorinwhichthespectralintegralsforperturbationtheorydiagramsarecutatacertaineffectivecontinuum thresholds ,orsimply“effectivethreshold”.Theeffectivecontinuumthresholddiffersfromthephysicalcontinuum eff threshold determined by masses of low-lying hadrons. Obviously, apart from a truncated OPE for a correlator, the effective continuum threshold is a crucial ingredient of every sum-rule extraction of ground-state parameters; this quantitygovernstheaccuracyofthequark–hadrondualityanddeterminestolargeextentthenumericalvalueofthe extractedparametersof the boundstate. The truncatedOPE itself cannotprovideprecise valuesof the ground-state parameters. Therefore, the method of QCD sum rules provides hadron parameters with some uncertainty which is referredtoassystematicuncertainty[8]. Understandingthepropertiesoftheeffectivecontinuumthresholdandfindingacriterionforfixingthisquantityis thekeytoobtainingreliablehadronparametersfromsumrules. 1. TWO-POINTCORRELATIONFUNCTION ANDTHE OPE Let us start with the simplest object – the two-point correlation function;the perturbativeexpansion for this object is known to a higher accuracy compared to more complicated correlators. Because of that, the formulation and applicationoftheappropriateandreliablealgorithmsfortheextractionofthehadronparametersfromthiscorrelator isbecomingincreasinglyimportant. The two-pointfunction,i.e. the vacuumaverageof the T-productof two interpolatingquarkcurrentsis the basic objectforthesum-rulecalculationofthedecayconstantsoftheheavy-lightmesonssuchasB,B ,D,D ortheirvector s s analogues.Forinstance,forheavy-lightpseudoscalarcurrents j =m q¯ig b(herem isthescale-dependentMSmass 5 b 5 b oftheheavyquarkandM willdenoteitspolemass;thelight-quarkmassisneglected)oneobtains b P (p2)=i d4xeipx W T j (x)j†(0) W (1) 5 5 Z D (cid:12) (cid:16) (cid:17)(cid:12) E TheWilsonOPEfortheT-productandforthecorrelation(cid:12)functionhasthe(cid:12)followingform: (cid:12) (cid:12) T j (x)j†(0) =C (x2,m )1ˆ+(cid:229) C (x2,m ):Oˆ(x=0,m ): (2) 5 5 0 n n (cid:16) (cid:17) and P (p2)=P (p2,m )+(cid:229) Cn W :Oˆ(x=0,m ): W (3) pert (p2 M2)nh | | i n − b Here the physicalQCD vacuum W is a complicatedobjectwhich differsfrom perturbativeQCD vacuum 0 . The | i | i propertiesof the physicalvacuum are characterized by the condensates – the nonzeroexpectation values of gauge- invariantoperatorsoverthisphysicalvacuum: W :Oˆ(0,m ): W =0. (4) h | | i6 Thenumericalestimatesforthecondensatesmaybefoundin[2,3].Hereweonlylisttherecentdeterminationsofthe lowest-dimensioncondensateswhichclaimanextremelyhighaccuracy: a hW |q¯q(2GeV|W iMS=(282±2MeV)3[9], hW |psGamn Ga,mn |W i=0.013±0.0016GeV4[10]. (5) Thetwo-pointfunctionsatisfiesthedispersionrepresentation(whichrequiressubtractionsnotshownhere) ds P (p2)= r (s), (6) s p2 Z − and may be calculated both using OPE (which gives it in the form P (p2)) and using the sum over the hadron OPE intermediatestates(whichgivesitintheformP (p2)).Thesumruleisthestatementthatbothformsrepresentthe hadr samequantityandthusshouldbeequaltoeachother P (p2)=P (p2). (7) OPE hadr Thespectraldensitiesforthetworepresentationsread r (s)= r (s,m )+(cid:229) C d (n)(s M2) W O (m )W , r (s)= f2M4d (s M2)+r (s) (8) OPE pert n − b h | n | i hadr B B − B cont (cid:20) n (cid:21) HereM denotestheheavy-mesonmass, f isitsdecayconstantdefinedas B B 0 j B = f M2. (9) h | 5| i B B ThetruncatedOPEserieshasquarkandgluonsingularitiesanddoesnothavethehadronones;therefore,comparison ofthetruncatedOPEandthehadronrepresentationin(7)maybedoneintheregionof p2 farfromhadronthresholds andresonances. Performingthe Boreltransformwhichservesseveralpurposes(suppressingthe contributionofthe excitedstates, killingthesubtractiontermsinthedispersionrepresentationforP (p2),improvingtheconvergenceoftheperturbative expansion[1])onearrivesattheBorelimageofthetwo-pointfunction ¥ P hadr(t )= dsexp(−st )r hadr(s)= fB2MB4e−MB2t + dse−st r hadr(s), (10) Z spZhys where s =(M +M )2 is the physical continuum threshold, determined by the masses of hadrons which may phys B P ∗ appearastheintermediatestates,and ¥ P (t )= dsexp( st )r (s)= dse st r (s,m )+P (t ,m ), (11) OPE OPE − pert power − Z Z m2 b wherepowercorrectionsP (t ,m )aregivenviathecondensatesandradiativecorrectionstothem. power Thesumrulenowtakestheform P (t )=P (t ). (12) OPE hadr Recall that the hadron (i.e. full-QCD) representation P (t ) is an infinite sum of the exponential terms, whereas hadr power corrections in P (t ) contain polynomials in t multiplied by exp( M2t ). Therefore the truncated OPE providesagooddescriptiOoPnEofP (t )at“nottoolarge”valuesoft .Thisdeter−minbesthechoiceoftheBorelwindow– hadr theworkingt -rangewheretheOPEgivesanaccuratedescriptionoftheexactcorrelator(i.e.,allhigher-orderradiative andpowercorrectionsare undercontrol)andat thesame time the groundstate givesa “sizable”contributionto the correlator. The best-known 3-loop calculations of the perturbative spectral density [11] have been performed in form of an expansionintermsoftheMSstrongcouplinga (m )andthepolemassM : s b a (m ) a (m ) 2 r (s,m )=r (0)(s,M2)+ s r (1)(s,M2)+ s r (2)(s,M2,m )+ . (13) pert b p b p b ··· (cid:18) (cid:19) An alternative option [12] is to reorganizethe perturbative expansion in terms of the running MS mass, m (n ), by b substitutingM inthespectraldensitiesr (i)(s,M2)viaitsperturbativeexpansionintermsoftherunningmassm (n ) b b b a (n ) a (n ) 2 M =m (n ) 1+ s r + s r +... . (14) b b p 1 p 2 (cid:18) (cid:19) ! Asnoticedin[12,13],twodifferentscales, m andn ,naturallyemergewhenreorganizingtheperturbativeexpansion fromthepoleb-quarkmasstotherunningb-quarkmass.Inourdiscussionwedonotdistinguishbetweenthesescales, butinpracticalcalculationsthescaleshavebeentreatedindependently. Advanced algorithms foranisolationofthe ground-state contribution Thehadronrepresentationcontainsthesumoverallhadronintermediatestates,whereasweareprimarilyinterested in the ground state contribution. To exclude the excited-state contributions, one adopts the duality Ansatz: all con- tributionsofexcitedstatesarecounterbalancedbytheperturbativecontributionaboveaneffectivecontinuumthresh- old, s (t ,m )whichdiffersfromthephysicalcontinuumthreshold.Applyingthedualityassumptionyields: eff seff(t,m ) fB2MB4e−MB2t = dse−st r pert(s,m )+P power(t ,m )≡P dual(t ,seff(t ,m )). (15) Z m2 b TherhsisthedualcorrelatorP (t ,s (t ))(weshallnotexplicitlywritem asanargumentofs butthisdependence dual eff eff shouldbekeptinmind).Obviously,eveniftheQCDinputsr (s,m )andP (t ,m )areknown,theextractionof pert power thedecayconstantrequiress (t ,m ). Letusemphasize,thattheeffectivethresholdshouldbethe functionoft and eff m :(i)onecaneasilycheckthats shoulddependont inorderthet -dependencesofther.h.s.andthel.h.s.of(15) eff matcheachother;(ii)sincethetruncatedOPEisusedinther.h.s.of(15),theeffectivethresholdalsodependsonthe choiceofthescalem . Inearlyapplicationsofthemethodofsumrules,itwascommontousetheapproximations (t )=const;thevalue eff ofthisconstanthasbeenfixedbyrequiringthemaximalstability(i.e.theleastunphysicaldependenceofthehadron observableontheBorelparametert ).Thisprocedureprovedtoworkreasonablywell,althoughitdidnotallowone toprobetheuncertaintyoftheextractedhadronparameterinducedbyusingtheapproximationofaconstanteffective continuumthreshold. ItshouldbeemphasizedthateveniftheOPEforthecorrelationfunctionisknownwithveryhighaccuracyinthe Borelwindow,thehadronparameterscanstillbedeterminedwithsomeuncertaintywhichreflectsthelimitedintrinsic accuracyofthemethodofsumrules.Werefertothecorrespondinguncertaintyastothesystematicuncertainty.The latterisrelatedtotheadoptedprescriptionforfixingtheeffectivecontinuumthresholds (t ). eff As the accuracy of the OPE for the correlation functionshas increased, one faced the acute necessity to provide more accurate and reliable proceduresfor the extraction of hadron parameters: gaining control over the systematic uncertaintieshasbecomemandatory[8]. Theresultsof[14] demonstratedthatinthosecases wherethe bound-statemassM isknown,onecanuse itand B improvetheaccuracyofthedecayconstant.WeintroducethedualinvariantmassM andthedualdecayconstant dual f dual d Md2ual(t )≡−dt logP dual(t ,seff(t )), fd2ual(t )≡MB−4eMB2t P dual(t ,seff(t )). (16) ThedeviationofM (t )fromM measuresthecontaminationofthedualcorrelatorbyexcitedstates. dual B Startingwithanytrialfunctionfors (t )andminimizingthedeviationofM fromM inthet -windowyieldsa eff dual B variationalsolutionfors (t ).Assoonasthelatterisfound,onereadilyobtainsthecorrespondingdecayconstant f eff B from(15). Weconsiderpolynomialsint andobtaintheirparametersbyminimizingthesquareddifferencebetweenM2 and dual M2 inthet -window: B c 2 1 (cid:229)N M2 (t ) M2 2. (17) ≡ N dual i − B i=1 (cid:2) (cid:3) Asshowninseveralexactlysolvablemodels,thebandoftheestiamtesfor f correspondingtothevariationalsolutions B for linear, quadratic,and cubic trial s (t ), providesa realistic estimate for the systematic uncertaintyof the decay eff constant[15,16]. The resulting f obtained according to the procedure described above is sensitive to the input values of all the B OPE parameters (quark masses, a , the condensates) which are known with some uncertainties thus yielding the s OPE-relateduncertaintyof f . To obtain the latter, one assumesthe Gaussian distributionsfor the OPE parameters B mentionedabove.Moreover,becauseof the truncationof the OPE series, the decay constantsexhibitan unphysical dependenceontheprecisevalueoftherenormalizationscalesm .Apriori,anychoiceofthescaleisequivalentlygood; therefore,weaverageoverthescaleinsomeintervalsassumingtheuniformdistributionofm . Another simple algorithm for fixing the t -dependent effective threshold in the Borel sum rule has been recently •adoptedin [17]:foreachvalueof t the authorscalculatedM (t ) neglectingthe t -dependenceof s (t ) andthen dual eff easilyobtains bysolvingtheequationM (t )=M .Obviously,theresultingeffectivethresholdsdodependont ; eff dual B neglectingtheirt -dependencewhilecalculatingthedualmassleadstosomeintrinsicinconsistencies.Followingour oldidea,we tested thealgorithmof [17] in aquantum-mechanicalpotentialmodelforthecase of apotentialwhich containstheconfiningandtheCoulombparts[15].Thisanalysisshowsthatinquantummechanicsthealgorithmwith thevariationalsolutionsdescribedaboveprovidesmorereliableandaccurateestimatesforthedecayconstantsofthe heavy-lightmesonscomparedwiththealgorithmof[17]. Aninterestingapproachtotheextractionoftheground-stateparameterswithinthefinite-energysumrulehasbeen • formulatedand applied to the decay constants of heavy-lightand heavy-heavymesons in [18]. We have also tested thisalgorithminthepotentialmodel[15].Forthepotential-modelparametersappropriateforforheavy-lightmesons thealgorithmof[18]wasshowntoprovideratheraccurateestimatesforthedecayconstantssuchthatthe“invisible” systematicerrorremainsatafewpercentlevelonly. Charm sector For the extraction of the decay constants of the charmed pseudoscalar and vector mesons, one makes use of the best-known three-loop expression for the spectral densities of the two-point functions for pseudoscalar and vector currents.TheOPEintermsofthepolemassM calculatedin[11]doesnotexhibitaperturbativehierarchy,therefore b one rearrange the OPE in terms of the running MS-mass [12]. Then, the perturbative hierarchy of the correlation functionstarts to dependon m ; this featureallows oneto choosethe rangeof m where the perturbativehierarchyis visible.Thenegativeeffectofthisrearrangementoftheperturbativeexpansionisthat,becauseofthetruncationofthe OPEseries,theextracteddecayconstantsacquireanunphysicaldependenceonthescale m .Inthecharmsectorthis howeverdoesnotleadtoanyseriousproblems.Figure1showsthedependenceofthedecayconstantsofthecharmed pseudoscalar and vector mesons for the centralvalues of all other OPE parametersafter applyingthe algorithmfor fixing the effective thresholds described above. One can see a weak m -dependence of the decay constants of the pseudoscalarmesonsmesons,whereasforvectormesonsthism -dependenceismorepronounced.Averagingoverthe OPEparametersintheirrespectiveintervalsandoverthescaleintherange1 m [GeV] 3onearrivesatthefollowing ≤ ≤ results[19] f =(208.3 7.3 5 )MeV, f =(246.0 15.7 5 )MeV D ± OPE± syst Ds ± OPE± syst f =(252.2 22.3 4 )MeV, f =(305.5 26.8 5 )MeV. (18) D∗ ± OPE± syst D∗s ± OPE± syst Fortheratiowereported f /f =1.221 0.080 0.008 ,whichcomparesnicelywiththelatticeQCDresult D D OPE syst ∗ ± ± f /f =1.20 0.02.Theresultsforthecharmedmesonsfromothersum-ruleanalyses[17,20]agreewellwitheach D D ∗ ± otherandwiththeresultsfromlatticeQCD[21]. fD,D*@MeVD fDs3,D4s0*@MeVD 280 320 fDs* 260 fD*=252.2±18.7MeV fD* 300 fDs*=305.5±10.8MeV 240 280 220 fD=208.3±3.8MeV 260 f 200 f fDs=246.0±0.9MeV Ds D 240 Μ@GeVD Μ@GeVD 1.25 1.5 1.75 2 2.25 2.5 2.75 3 1.25 1.5 1.75 2 2.25 2.5 2.75 3 FIGURE1. DecayconstantsofD,DsD∗andD∗s mesonsdependingonthescalem . fB,B*@MeVD fB*(cid:144)fB 196 1.02 f 194 B fB=192.6±0.4MeV 1 192 190 0.98 188 fB* fB*=186.4±1.8MeV 0.96 186 184 0.94 Μ@GeVD Μ@GeVD 3 4 5 6 7 3 4 5 6 7 FIGURE2. DecayconstantsofBandB∗mesonsandtheratio fB∗/fBdependingonthescalem . Beauty sector Similar to the charmsector, the OPE for pseudoscalarand vector currentscontainingthe b-quark,does notshow anyperturbativehierarchy;thereisnoreasontoassumethattheunknownhigher-orderperturbativecontributionsare small.Rearrangingtheperturbativeexpansionintermsoftherunningmassintroducesthedependenceofthescalem andopensthepossibilitytochoosetheworkingrangeofm inwhichtheperturbativehierarchyisexplicitthusallowing tohopetheunknownhigherordersdonotcontributesubstantiallytothecorrelationfunction. Intheb-sectoroneencounterstwointerestingfeaturesofthesum-ruleanalysis: Thesum-ruleresultsforthebeauty-mesondecayconstantscorrelateverystronglywiththeb-quarkmass[22] • d f /f 8d m /m , (19) B B b b ≈− m m (m ).Makinguseofm =4.18 0.03GeV[23]leadsto f >210MeV,incleartentionwiththerecentlattice b b b b B ≡ ± QCDresultsfor f 190MeV.Combiningoursum-ruleanalysiswith f and f fromlatticeQCDyields[22] B∼ B Bs m =(4.247 0.027 0.011 )GeV. (20) b ± ± (syst) Thesum-ruleresultsforthedecayconstantscorrespondingtothisvalueoftheb-quarkmassread f =(192.0 14.3 3.0 )MeV, f =(228.0 19.4 4.0 )MeV (21) B ± OPE± syst Bs ± OPE± syst For the decay constant of B , one observesan unexpectedlystrong m -dependence[24]: Averaging over the scale ∗ r•ange3<m [GeV]<6leadsto f /f =0.923 0.059, f /f =0.932 0.047. B∗ B ± B∗s Bs ± Taking into account only low-scale results for 2.5< m [GeV] < 3.5, yields f /f = 0.994 0.01. The sum-rule B B ∗ ± analysis[17]alsogivesindicationsthat f /f 1(sesTableIIof[17]).Surprisingly,theQCDsum-ruleprediction B B ∗ ≤ for f /f is below the correspondingresults from lattice QCD, which seem to favour a value slightly aboveunity B B ∗ [21,25].Clearly,suchtensioncallsforfurtherdetailedinvestigations. m -dependence ofthe physicalquantities The heavy-light correltors are known with an impressive three-loop accuracy and are therefore rather weakly sensitivetothevariationsofthescale.Nevertheless,thedualcorrelatorofthevectorcurrentswhichincludesthelow- energyregionoftheFeynmandiagramsonlyand,respectively,thevector-mesondecayconstantsarerathersensitive tothechoiceofthescale.Inmanycasesthisscale-dependenceisthemainsourseoftheOPEuncertaintyinthedecay constants.We shouldmentionthatinsomepublicationsthe m -dependenceistreatedina specificway[20]:onejust choosesonescaleatwhichthedecayconstanthas,e.g.,anextremuminm ,andprovidestheresultsforthisveryscale assigning no theoretical uncertainty to the scale fixing. This of course reduces strongly the total uncertainty of the decayconstantobtainedwiththesum-ruletechniquebutfromourpointofviewsuchatreatmentisnotjustified:the (unphysical) m -dependenceis an effect of the truncation of the OPE series and thus reflects an essential feature of QCD. Any of the scale for which a reasonable perturbativehierarchyis seen, may be used for the determinationof the hadronparameter;the unpleasant m -dependenceof the sum-ruleresults should be thus properlyreflected in the theoreticaluncertaintyofthehadronparameterobtainedusingaQCDsumrule. SUMRULES FORTHREE-POINT VACUUMCORRELATION FUNCTIONS Let us now discuss the calculation of the meson elastic and transition form factors from the three-point vacuum correlationfunctions[26,27].Thebasicobjectinthiscasehastheform G (p2,p2,q2)= W T(j(x)j(0)j(y))W exp( ipx)exp( ipy)dxdy. (22) ′ ′ h | | i − − Z Thethree-pointGreenfunctioninfullQCDcontainsthedoublepolerelatedtothemesonsinthe p2 and p2-channels ′ in the timelike region. The residue in this double pole is the form factor of interest. The Green function in the spacelike region may be calculated using the same method as the two-point function, i.e. by performing the OPE. OnerepresentstheGreenfunctionG (p2,p2,q2)asadoublespectralintegralin p2and p2,performsthedoubleBorel ′ ′ transform p2 t and p2 t (which,similar to thetwo-pointfunction,kills thesubtractiontermsandsuppresses ′ ′ thecontributio→nsoftheexc→itedstates),equatetoeachothertheOPEandthehadronrepresentationsforG (p2,p2,q2), ′ andusedualitypropertytoisolatetheground-statecontribution,thusrelatingthemesonformfactortothelow-energy regionofthetrianglediagramsofperturbativeQCDandpowercorrectionsgiventhroughthecondensates.Forinstance, thepionelasticformfactor,inwhichcaseonesetst =t ,hastheform[27] ′ Fp (Q2)fp2= seff(Q2,t)seff(Q2,t)ds1ds2D pert(s1,s2,Q2)e−s1+2s2t + a2s4Gp 2 t +4pa 8s1hq¯qi2t 2 13+Q2t +···, Z Z (cid:10) (cid:11) 0 0 (cid:0) (cid:1) D (s ,s ,Q2)=D (0)(s ,s ,Q2)+a D (1)(s ,s ,Q2)+ . (23) pert 1 2 1 2 s 1 2 ··· Anessentialfeatureofthethree-pointsumruleisthattheeffectivethresholdnowdependsontheBorelparametert andthemomentumtransferQ[28–30];obviously,onefacesaseriousproblemoffindingappropriatealgorithmsfor fixings (Q2,t ). Itshouldbeunderstoodthattheeffectivecontinuumthresholdforthe formfactordiffersfromthe eff effectivethresholdforthedecayconstant.1 For large Q2, power corrections calculated in terms of the local condensates rise as polynomials with Q2, thus preventingadirectuseofthesumrule(23)atlargeQ2.Thereareessentiallyonlytwopossibilitiestostudytheregion oflargeQ2 startingwiththevacuumcorrelators: usenonlocalcondensateswhichareaimedattheresummationofthelocalcondensateeffects[31,32]. •workintheso-calledlocal-duality(LD)limitt =0[31].Aspecificfeatureofthislimitisthatallpowercorrections van•ishinthislimitanddetailsofnon-perturbativedynamicsarehiddeninonecomplicatedobject–theQ2-dependent effectivethresholds (Q2). eff Asimilartreatmentmaybeperformedfor,e.g.,thep 0 gg transitionformfactor[33–35]forwhichoneobtains ∗ → thesinglespectralrepresentationintheLDlimit: s¯eff(Q2) Fpg (Q2)fp = dss pert(s,Q2) (24) Z 0 Due to properties of the spectral functions D (s ,s ,Q2) and s (s,Q2), the form factors obey the factorization pert 1 2 pert theorems Fp (Q2) 8pa s(Q2)fp2/Q2, Fpg (Q2) √2fp /Q2, fp =130MeV (25) → → assoonastheeffectivethresholdssatisfy seff(Q2 ¥ )=s¯eff(Q2 ¥ )=4p 2fp2. (26) → → Remarkably,duetotheQCDfactorizationtheoremsforthehardformfactors,theeffectivethresholdsatQ2 ¥ are → giventhroughthedecayconstantsoftheparticipatingmesons.Itshouldbeemphasizedthattheonlyfeatureoftheory relevantforthispropertyofs (Q2)isfactorizationofhardformfactors. eff 1 Theeffectivethresholdsforthebaryonformfactorsarestronglysensitivetothechoiceoftheinterpolatingcurrentforaspecificbaryon. For finite Q2, the effective thresholds s (Q2) and s¯ (Q2) depend on Q2 and differ from each other [36, 37]. eff eff Nevertheless,settings (Q2)=s (Q2 ¥ )forallnottoosmallQ2 [27]providesanapproximateparameter- rmeff rmeff → free predictionforthe formfactorswhichis becomingincreasinglyaccurateas soonasQ2 increases.The resultsof [37]giveconvincingevidencesthats (Q2)ands¯ (Q2)areclosetotheirasymptoticvaluesalreadyatrelativelylow eff eff valuesQ2 4 8GeV2. ≈ − Thus,theLDapproximationfortheformfactors—whichrequiresasitscrucialingredienttheknowledgeofO(1) and O(a ) double spectral densities—is increasingly accurate in the region not too close to zero recoil. The LD s approximationisverypromisingfortheapplicationto,e.g.,heavy-to-lightweakformfactors.Astillmissingingredient hereis the two-loopO(a ) doublespectraldensityof the trianglediagramfordifferentcurrentsand arbitraryquark s massesintheloop.Thisisareallychallengingcalculationwhichhoweveropensthepossibilitiesofveryinteresting applications.Sofartheonlyknownresultscorrespondtoallmasslessquarksintheloop[38]andtoHQET[39,40]. SUM RULES FORTHEEXOTIC POLYQUARKCURRENTS TheOPEforthecorrelationfunctionsoftheexoticpolyquarkcurrentsinvolving4(or5)quarkfieldsofthetype D(x)=q¯ (x)Oˆq (x)q¯ (x)Oˆq (x) (27) 1 2 3 4 where Oˆ is an appropriate combination of the Dirac matrices and possibly also of the (covariant) derivatives, have specific features compared to the OPE for the bilinear currents of the form j(x) = q¯ (x)Oˆq (x) used for usual 1 2 “nonexotic”mesons.Namely,the lowest-orderO(1) contributionto the OPE forany correlatorinvolvingthe exotic current,e.g. P = 0T(D(x)D(0)0 , is givenby the disconnecteddiagrams.As knownfromthe generalfeatures DD h | | i oftheBethe-SalpeterequationandalsoemphasizedrecentlybyWeinberg[41],thesedisconnecteddiagramsarenot related to the exotic boundstates. The connecteddiagramsrelevantfor the exotic states emergein the OPE forany correlatorattheorderO(a )andhigher;thereforefortheanalysisoftheexoticstatestheknowledgeoftheradiative s correctionsis mandatory.This makesthe analysisof the exotic states a more technicallyinvolvedproblemthan the analysisofthenormalhadrons. Nevertheless,duetothefactthattheobservedexoticstatesarenarrow,theprocedureofextractingtheirparameters fromtheOPEhasthesamefeaturesandthesamechallengesasforthenormalhadrons.Ourexperienceintheanalysis oftheusualhadronsprovesthatatruncatedOPEforthecorrelationfunctiondoesnotallowonetostudyatthesame time both the existence of the isolated groundstate and of its properties. However,if the mass of the narrowbound stateisknown,themethodofsumrulesallowsonetoobtainreliablepredictionsforitsdecayconstantsandtheform factors. Structure oftheexotictetraquark states Obviously, the exotic tetraquark states may have a rather complicated “internal” structure; two most popular scenarios of this structure are a confined tetraquark state (i.e. a bound state in a confining potential between the twocolor-tripletdiquarks)andamolecular“nuclear-physicslike”boundstateinthesystemoftwocolorlessmesons. However, an important question about the structure of the exotic state—which to large extent determines also its production mechanism—is not easy to answer [42]: (i) by a combined color-spinor Fierz rearrangement of the tetraquark interpolating current D(x) one can write it either in diquark-antidiquark or meson-meson form; (ii) the samequantumnumbersoftheexoticinterpolatingcurrentmaybeobtainedbydifferentcombinationsofitsdiquark- antidiquarkormeson-mesonbilinearparts. Thesimplestcharacteristicofausualmesonisitsdecayconstant,i.e.thetransitionamplitudebetweenthevacuum andthemesoninducedbyitsinterpolatingcurrent;foraheavyquarkoniumstatethedecayconstantisanalogoustoits wavefunctionattheoriginy (r=0). Foranexotictetraquarkstateoneshouldconsiderstheconnectedself-energyfunctions P = 0T(D(x)D(0)0 DD (28) DD h | | i≡h i and study the corresponding sum rules. However, for an exotic state one may obtain a set of the decay constants, relatedtodifferentstructureoftheinterpolatingcurrentwiththequantumnumbersoftheexotictetraquarkofinterest. Theanswertothequestionofthedominantstructureofthetetraquarkmaybegivenonlybytheanalysisofalargeset ofthedecayconstants. Asthe firststep, oneneedstostudy systematicallytheinterpolatingcurrentsfortetraquarkcurrentswith different q•uantumnembers.AsthenextsteponecancalculatethesetofP .Becauseofthefactorizationpropertyofthetwo- DD pointfunctionofthelocaltetraquarkcurrents[43],theradiativecorrectionstoP aregivenviaradiativecorrections DD tothevarioustwo-pointfunctionsofthebilinearquarkcurrents.Forsomeofthesetwo-pointfunctions(namely, VV h i and AA )theradiativecorrectionsarewell-known,forsomeofthem(suchas TT ,T isthetensorbilinearcurrent) h i h i thesecorrectionsshouldbecalculated. Then, the set of the sum rules for different two-pointfunctionsP should be studied and only then the answer DD • aboutthestructureoftheobservednarrowexoticcandidatesmaybeobtained.Especiallyinterestingcasesherearethe narrowchargedtetraquarkZ (4430)(JP =1+ and the width 45 MeV, valence-quarkcontentc¯cu¯d) and X(3872) − (JPC=1++X(3872),thewidth<24MeV). ≃ Anotherinterestingpossibility—sofarnotdiscussedintheliterature—isconsideringnonlocalinterpolatingcurrents fortheexoticmesons.Thenonlocalityoftheinterpolatingcurrentsshouldallowonetoaccessinabetterwaysubtle detailsofthetetraquarkstructure. Strong fall-apartdecays ofthe exotictetraquark states Inthelastdecade,QCDsumruleshavebeenextensivelyappliedtotheanalysisofstrongdecaysofexoticmultiquark states(seee.g.[44,45]andreferencestherein).ThebasicobjectfortheanalysisofthesedecaysinQCDisthethree- pointfunctionsofthetype G (p,p′,q)= 0T(D(0)j(x1)j(x2)0 exp( ip′x1 iqx2)dx1dx2. (29) h | | i − − Z Thiscorrelatorcontainsthetriple-poleintheMinkowskiregion f f f g G hadr(p,p′,q)= (p2 MX2)(Mp12M2MX2M)1(Mq22 M2)+··· (30) − X ′ − 1 − 2 where dots stay for less singular terms. Here g is the three-hadroncoupling which describes the X M M XM1M2 → 1 2 transition; f , f , and f are the decay constants of the mesons describing the strength of their their interaction X M1 M2 withtheinterpolatingcurrent X D(0)0 = f and M j (0)0 = f (weomithereallLorentzindicesandfor X 1,2 1,2 1,2 h | | i h | | i simplicity neglect the spins of the hadrons and of the interpolating currents). The OPE allows one to calculate the expansionofthiscorrelatoratthespacelikemomentafarfromthehadronthresholds.Again,theleadingcontribution ina isgivenbyadisconnecteddiagram(seeFig.3a)whichfactorizesanddoesnotdependonthemomentumofthe s exoticcurrentp2 atall: G (p2,p2,q2)=P (p2)P (q2)+a G (p2,p2,q2) (31) OPE ′ ′ s connected ′ q q p p p’ p’ FIGURE3. (a)ThedisconnectedO(1)diagramwhichdoesnotdependonthevariable p2relevantforthetetraquarkproperties; (b)Oneofthelowest-orderconnectedO(a s)diagramwhichcontributestothetetraquarkdecayamplitude. PerformingtheBoreltransform p2 t ,whichcomprisesoneofthestepsofthesum-ruleanalysis,weseethatthe Borelimageofthedisconnectedleadi→ng-ordercontributionvanishes.2Thereforeanyattempttoextractthetetraquark decay amplitude from the leading-ordercontribution is inconsistent. Relevant for the exotic-state propertiesare the O(a )correctionswhicharetechnicallyverydifficult.Thisisadifficultcalculationbutitshouldbedonebeforeone s mayhopetogetreliablepredictionsforthetetraquarkproperties.Sofarthesecorrectionshavebeencalculatedonlyfor thethree-pointfunctionofthebilinearcurrentsintwocases(i)formasslessquarksand(ii)forinfinitelyheavyactive quarkandamasslessspectator.FortheO(a )correctionstothethree-pointfunctionsG ,involvingonetetraquarkand s twobilinearcurrents,noresultsexistintheliterature. Nevertheless,thecommonfeatureofallpreviouscalculationsofthesedecayswithinQCDsumrules(e.g.[45,46]) wastheattempttostudythetetraquark(andpentaquark)decaysbasingonthefactorizableleading-ordercontribution whichintrinsicallyhasnorelationshipwiththetetraquarkproperties(whichisclearbothfromthefactorizationprop- ertyG (p,p,q)=P (p2)P (q2)andfromthelarge-N behaviouroftheQCDdiagramsemphasizedbyWeinberg[41]. ′ ′ c Thereforetheexistinganalysesshouldbestronglyrevisedbycalculatingandtakingintoaccountthenonfactorizable two-loopO(a )corrections. s Nonzeroresultsbasedontheleading-ordercorrelationfunctionmaybeobtainedonlybyatrick.Letusconsidere.g. thedecayZ y +p . Onemakesuse ofthetetraquarkcurrent j(x)=c¯(x)c(x)u¯(x)d(x) (weagainomitthe Dirac ′ − → matricesforsimplicity).Thecorrespondingthree-pointcorrelationfunctionofinterestis G (p2,p2,q2) = d4xd4yexp( ipx)exp( iqy) 0T(c¯(0)c(0)u¯(0)d(0),c¯(x)c(x),d¯(y)u(y))0 . (32) ′ ′ − − h | | i Z A nonzero result for the Borel transform of the disconnected zero-order contribution may be obtained by first considering the soft-pion limit q 0, i.e. p = p, which gives for the disconnected contribution P (p2)P (0) and ′ thenperformingtheBoreltransfor→m p2 t .However,thedecayrateobtainedinthiswayisnotreallytrustworthy. → Wethereforeconcludethatthe“fall-apart”decaymechanismofexotichadronsdiffersfromthedecaymechanism oftheordinaryhadronsandrequirestheappropriatetreatmentwithinQCDsumrules.Thecalculationoftheradiative correctionsismandatoryforareliableanalysisofthepropertiesoftheexoticstates. SUMMARY ANDOUTLOOK In the recent years, great progress has been seen both in the calculations of the OPE series for various correlation functionsandinthedirectionofformulatingadvancedalgorithmsfortheextractionoftheindividualhadronparameters fromthesecorrelators.Wecouldnotdiscussallthedevelopmentsinthistalkbutletustrytomentioninthissummary theinterestingopenissuestobeaddressedinthefutureanalyses: Let us recall that combining moment QCD sum rules with experimental/lattice data gives the most accurate • estimatesoftheheavy-quarkmasses[47]. Hadronpropertiesfrom2-pointfunctions: • a. We have seen a visible progressin developingthe new algorithmsfor extractinggroundstate parametersfrom the OPE of the correlatorsand gaining controlover the systematic errorsof the decay constants (finite-energy sum rules, Borel sum rules). Although it seems impossible to predict both masses and decay constants with a controlledaccuracy,usingthemassofthegroundstateasinput,systematicscanbecontrolled). b. Wehaveencounteredinterestingpuzzlesintheb-sector: (i)Theb-quarkmass4.18GeV[23]whenusedintheBorelsumrulesfor f leadstotensionwithlatticeresults B for f . B (ii) Unexpectedly strong scale-dependence of decay constants of vector mesons and of f /f even using the B B O(a 2)correlationfunction. ∗ s c. Calculationofthedecayconstantsofheavy-quarkoniumstateswithinthemethodofQCDsumrulesisstillnot fullysettled:TheproblemhereisthattheOPEforthedoubly-heavycorrelationfunctionscontainrelativelysmall 2 Weemphasizethatforthedecayofausualhadron,theO(1)contributionisgivenbyatrianglediagramwhichdependsonallthreevariables tph2e,pp′e2r,tqu2rbaantidvethQerCefDoriendoefecdopurroseviddoesesthneotdovmaniinsahnutncdoenrtrtihbeutBioonretlottrhaensdfeocramypo2fi→ntetre;sfto.rthedecaysoftheusualhadronstheO(1)contributionof

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.