ebook img

Advances in Computational Algorithms and Data Analysis PDF

574 Pages·2009·31.543 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Advances in Computational Algorithms and Data Analysis

Advances in Computational Algorithms and Data Analysis LectureNotesinElectricalEngineering Volume14 Forothertitlespublishedinthisseries,goto http://www.springer.com/7818 Sio-Iong Ao Burghard Rieger Su-Shing Chen • • Editors Advances in Computational Algorithms and Data Analysis (cid:65)(cid:66)(cid:67) Editors Sio-IongAo Su-ShingChen InternationalAssociationofEngineers DepartmentofComputer&Information Unit1,1/F,37-39HungToRoad Science&Engineering(CISE) HongKong UniversityofFlorida HongKong/PRChina POBox116120 GainesvilleFL32611-6120 E450,CSEBuilding BurghardRieger USA UniversitätTrier FBIILinguistische Datenverarbeitung Computerlinguistik Universitätsring15 54286Trier Germany ISBN:978-1-4020-8918-3 e-ISBN:978-1-4020-8919-0 LibraryofCongressControlNumber:2008932627 AllRightsReserved (cid:176)c 2009 SpringerScience+BusinessMediaB.V. Nopartofthisworkmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorby anymeans,electronic,mechanical,photocopying,microfilming,recordingorotherwise,withoutwritten permissionfromthePublisher,withtheexceptionofanymaterialsuppliedspecificallyforthepurpose ofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthework. Printedonacid-freepaper 9 8 7 6 5 4 3 2 1 springer.com Contents 1 Scaling Exponent for the Healthy and Diseased Heartbeat: QuantificationoftheHeartbeatIntervalFluctuations .............. 1 ToruYazawaandKatsunoriTanaka 2 CLUSTAG&WCLUSTAG:HierarchicalClusteringAlgorithms forEfficientTag-SNPSelection ................................ 15 Sio-IongAo 3 TheEffectsofGeneRecruitmentontheEvolvability andRobustnessofPattern-FormingGeneNetworks .............. 29 AlexanderV.SpirovandDavidM.Holloway 4 ComprehensiveGeneticDatabaseofExpressedSequenceTags forCoccolithophorids........................................ 51 MohammadRanjiandAhmadR.Hadaegh 5 HybridIntelligentRegressionswithNeuralNetworkandFuzzy Clustering ................................................. 65 Sio-IongAo 6 DesignofDroDeASys(DrowsyDetectionandAlarmingSystem) .... 75 HrishikeshB.Juvale,AnantS.Mahajan,AshwinA.Bhagwat, VishalT.Badiger,GaneshD.Bhutkar,PriyadarshanS.Dhabe, andManikraoL.Dhore 7 The Calculation of Axisymmetric Duct Geometries for Incompressible Rotational Flow with Blockage Effects andBodyForces ............................................ 81 VasosPavlika 8 FaultTolerantCacheSchemes................................. 99 H.-yu.TuandSarahTasneem v vi Contents 9 ReversibleBinaryCodedDecimalAddersusingToffoliGates ...... 117 RekhaK.James,K.PouloseJacob,andSreelaSasi 10 Sparse Matrix Computational Techniques in Concept DecompositionMatrixApproximation.......................... 133 ChiShenandDuranWilliams 11 TransferableE-cheques:AnApplicationofForward-SecureSerial Multi-signatures ............................................ 147 NagarajaiahR.Sunitha,BharatB.R.Amberker, andPrashantKoulgi 12 AHiddenMarkovModelbasedSpeechRecognitionApproach toAutomatedCryptanalysisofTwoTimePads................... 159 LiaqatAliKhanandM.S.Baig 13 AReconfigurableandModularOpenArchitectureController: TheNewFrontiers .......................................... 169 MuhammadFarooq,DaoBoWang,andN.U.Dar 14 AnAdaptiveMachineVisionSystemforParts AssemblyInspection......................................... 185 JunSun,QiaoSun,andBrianSurgenor 15 Tactile Sensing-based Control System for Dexterous Robot Manipulation............................................... 199 HanafiahYussof,MasahiroOhka,HirofumiSuzuki, andNobuyukiMorisawa 16 ANovelKinematicModelforRoughTerrainRobots.............. 215 JosephAuchter,CarlA.Moore,andAshitavaGhosal 17 BehaviorEmergenceinAutonomousRobotControl byMeansofEvolutionaryNeuralNetworks ..................... 235 RomanNeruda,StanislavSlusˇny´,andPetraVidnerova´ 18 SwarmEconomics........................................... 249 SanzaKazadiandJohnLee 19 MachinesImitatingHumans:AppearanceandBehaviour inRobots................................................... 279 QaziS.M.Zia-ul-Haque,ZhiliangWang,andXueyuanZhang 20 ReinforcedART(ReART)forOnlineNeuralControl ............. 293 DamjeeD.EdiriweeraandIanW.Marshall 21 TheBumpHuntingbytheDecisionTree withtheGeneticAlgorithm ................................... 305 HideoHirose Contents vii 22 MachineLearningApproachesfortheInversionoftheRadiative TransferEquation........................................... 319 EstebanGarcia-Cuesta,FernandodelaTorre,andAntonioJ.deCastro 23 EnhancingthePerformanceofEntropyAlgorithm usingMinimumTreeinDecisionTreeClassifier.................. 333 KhalafKhatatnehandIbrahiemM.M.ElEmary 24 NumericalAnalysisofLargeDiameterButterflyValve ............ 349 ParkYoungchulandSongXueguan 25 AxialCrushingofThin-WalledColumnswithOctagonalSection: ModelingandDesign ........................................ 365 YuchengLiuandMichaelL.Day 26 AFastStateEstimationMethodforDCMotors .................. 381 GabrielaMamani,JonathanBecedas,VicenteFeliu, andHeberttSira-Ram´ırez 27 FlatnessbasedGPIControlforFlexibleRobots .................. 395 JonathanBecedas,VicenteFeliu,andHeberttSira-Ram´ırez 28 EstimationofMass-Spring-DumperSystems .................... 411 JonathanBecedas,GabrielaMamani,VicenteFeliu, andHeberttSira-Ram´ırez 29 MIMOPIDControllerSynthesiswithClosed-LoopPole Assignment ................................................ 423 Tsu-ShuanChangandA.NazliGu¨ndes¸ 30 RobustDesignofMotorPWMControlusingModeling andSimulation ............................................. 439 WeiZhan 31 Modeling,ControlandSimulationofaNovelMobile RoboticSystem ............................................. 451 XiaoliBai,JeremyDavis,JamesDoebbler,JamesD.Turner, andJohnL.Junkins 32 AllCircuitsEnumerationinMacro-EconometricModels .......... 465 Andre´ A.Keller 33 NoiseandVibrationModelingforAnti-LockBrakeSystems ....... 481 WeiZhan 34 InvestigationofSinglePhaseApproximationandMixtureModel onFlowBehaviourandHeatTransferofaFerrofluidusingCFD Simulation ................................................. 495 MohammadMousavi viii Contents 35 TwoLevelParallelGrammaticalEvolution...................... 509 PavelOsˇmera 36 Genetic Algorithms for Scenario Generation in Stochastic Programming:MotivationandGeneralFramework ............... 527 JanRoupecandPavelPopela 37 NewApproachofRecurrentNeuralNetworkWeightInitialization.. 537 RobertoMarichal,J.D.Pin˜eiro,E.J.Gonza´lez,andJ.M.Torres 38 GAHC:HybridGeneticAlgorithm............................. 549 RadomilMatousek 39 ForecastingInflationwiththeInfluenceofGlobalization usingArtificialNeuralNetwork-basedThinandThickModels ..... 563 Tsui-FangHu,IkerGondraLuja,Hung-ChiSu,andChin-ChihChang 40 Pan-TiltMotionEstimationUsingSuperposition-TypeSpherical Compound-LikeEye......................................... 577 Gwo-LongLinandChi-ChengCheng Chapter 1 Scaling Exponent for the Healthy and Diseased Heartbeat Quantification of the Heartbeat Interval Fluctuations ToruYazawaandKatsunoriTanaka* Abstract“Alternans”isanarrhythmiaexhibitingalternatingamplitudeoralternat- ingintervalfromheartbeattoheartbeat,whichwasfirstdescribedin1872byTraube. Recently alternans was finally recognized as the harbinger of a cardiac disease because physicians noticed that an ischemic heart exhibits alternans. To quantify irregularityof the heartbeat including alternans, weused thedetrended fluctuation analysis(DFA).Werevealedthatinboth,animalmodelsandhumans,thealternans rhythmlowersthescalingexponent.Thiscorrespondencedescribesthatthescaling exponentcalculatedbytheDFAreflectsariskforthe“failing”heart. Keywords Alternans·Animalmodels·Crustaceans·DFA·Heartbeat 1.1 Introduction My persimmon tree bears rich fruits every other year. A climatologist report that globalatmosphericoxygenhasbistability[1].Period-2issuchanintriguingrhythm innature.Thecardiac“Alternans”isanotherperiod-2.Incardiacperiod-2,theheart- beat is alternating the amplitude/interval from beat to beat on the electrocardio- gram (EKG). Alternans has remained an electrocardiographic curiosity for more thanthreequartersofacentury[2,3].Recently,alternansisrecognizedasamarker for patients at an increased risk of sudden cardiac death [2–7]. In our physiologi- cal experiments on the hearts in the 1980s, we have noticed that alternans is fre- quentlyobservablewiththe“isolated”heartsofcrustaceans(Note:Atthisisolated T.Yazawa((cid:1))andK.Tanaka DepartmentofBiologicalScience,TokyoMetropolitanUniversity,Tokyo,Japan. Bio-PhysicalCardiologyReseachGroup e-mail:[email protected];[email protected] ∗Thecontactauthormailingaddress:1705-6-301Sugikubo,Ebina,243-0414Japan,telephoneand faxnumber:+81-462392350.Presentaddress,228-2Dai,Kumagaya,Saitama,360–0804Japan. S.-I.Aoetal.(eds.),AdvancesinComputationalAlgorithmsandDataAnalysis, 1 LectureNotesinElectricalEngineering14, (cid:1)c SpringerScience+BusinessMediaB.V.2009 2 T.YazawaandK.Tanaka conditiontheheartsoonerorlaterdiesintheexperimentaldish).Wesoonrealized thatalternansisasignoffuturecardiaccessation.Presently,someauthorsbelieve thatitistheharbingerforsuddendeath[2,6].Sowecamebacktothecrustaceans, because we knew the crustaceans are outstanding models. However, details of al- ternanshavenotbeenstudiedincrustaceans.Soweconsideredthatwecouldstudy this intriguing rhythm by the detrended fluctuation analysis (DFA), since we have already demonstrated that the DFA can distinguish a normal heart (intact heart) from an unhealthy heart (isolated heart) in animal models [8]. We finally revealed that alternans and lowered scaling exponent occurred concurrently. In this report, wedemonstratethattheDFAisanadvantageoustoolinanalyzing,diagnosingand managingthedysfunctionoftheheart. 1.2 Procedure 1.2.1 DFAMethods:Background The DFA is an analytical method in physics, based on the concept of “scaling” [9,10]. The DFA was applied to understand a “critical phenomenon” [9,11,12]. Systems near critical points exhibit self-similar properties. Systems that exhibit self-similarpropertiesarebelievedtobeinvariantunderatransformationofscale. Finally the DFA was expected to apply to any biological system, which has the propertyofscaling. Stanley and colleagues have considered that the heartbeat fluctuation is a phe- nomenon,whichhasthepropertyofscaling.Theyfirstappliedthescaling-concept to a biological data in the late 1980s to early 1990s [11,12]. They emphasized on itspotentialutilityinlifescience[11].However,althoughthenonlinearmethodis increasingly advancing, a biomedical computation on the heart seems not to have maturedtechnologically.Indeedwestillaskus:Canwedecodethefluctuationsin cardiacrhythmstobetterdiagnoseahumandisease? 1.2.2 DFAMethods We made our own programs for measuring the beat-to-beat intervals and for cal- culating the approximate scaling exponent of the interval time series. These DFA- computation methods have already been explained elsewhere [13]. We describe it herebrieflyonthemostbasiclevel. Firstly, we obtain the heartbeat data digitized at 1KHz. About 3,000beats are necessary for a reliable calculation of an approximate scaling exponent. Usually a continuousrecordforabout50minatasingletestingisrequired.WeuseanEKG orfingerpressurepulses.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.