ebook img

Advanced Statistics For The Behavioral Sciences A Computational Approach With R PDF

539 Pages·2018·17.673 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Advanced Statistics For The Behavioral Sciences A Computational Approach With R

Jonathon D. Brown Advanced Statistics for the Behavioral Sciences A Computational Approach with R Advanced Statistics for the Behavioral Sciences Jonathon D. Brown Advanced Statistics for the Behavioral Sciences A Computational Approach with R JonathonD.Brown DepartmentofPsychology UniversityofWashington Seattle,WA,USA ISBN978-3-319-93547-8 ISBN978-3-319-93549-2 (eBook) https://doi.org/10.1007/978-3-319-93549-2 LibraryofCongressControlNumber:2018950841 ©SpringerNatureSwitzerlandAG2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors, and the editorsare safeto assume that the adviceand informationin this bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface “Mythinkingisfirstandlastandalwaysforthesakeofmydoing.” —WilliamJames As insightful as he was, William James was not referring to the twenty-first- century relation between computer-generated statistical analyses and scientific research. Nevertheless, his insistence that thinking is always for doing speaks to thatassociation.Inbygonedays,statisticianswereresearchers—pursuingtheirown lineofinquiryoremployedbycompaniestoidentifyproductivepractices—andthe statisticalanalysestheydevelopedweretoolstohelpthemunderstandthephenom- ena they were studying. Today, statistical analyses are increasingly developed and refined by individuals who have received training in computer science, and their expertise lies in writing efficient and elegant computer code. As a result, ordinary researcherswholackabackgroundincomputerprogrammingareaskedtoaccepton faiththeblack-boxoutputthatemergesfromthesophisticatedstatisticalmodelsthey increasinglyuse. Thisbookisdesignedtobridgethegapbetweencomputerscienceandresearch application. Many of the analyses are advanced (e.g., regularization and the lasso, numerical optimization with the Nelder-Mead simplex, and mixed modeling with penalized least squares), but the presentation is relaxed, with an emphasis on understanding where the numbers come from and how they can be interpreted. In short,thefocusison“thinkingforthesakeofdoing.” v vi Preface Organization Thebookisdividedintothreesections. Linearalgebra Biasandefficiency Nonlinearmodels 1.Linearequations 6.Generalizedleastsquares 10.Optimizationandnonlinear 2.Leastsquaresestima- 7.Robustregression leastsquares tion 8.Modelselectionandshrinkage 11.Generalizedlinearmodels 3.Linearregression estimators 12.Survivalanalysis 4.Eigendecomposition 9.Cubicsplinesandadditive 13.Time-seriesanalysis 5.Singularvalue models 14.Mixed-effectsmodels decomposition I begin with linear algebra for two reasons. First, and most obviously, linear algebraunderliesmoststatisticalanalyses;second,understandingthemathematical operations involved in Gaussian elimination and backward substitution provides a basisforunderstandinghowmodernstatisticalsoftwarepackagesapproachstatisti- cal analyses (e.g., why the QR decomposition is used to solve linear regression problems). An emphasis on numerical analysis, which occurs throughout the text, representsoneofthebook’smostdistinctivefeatures. Using ℛ All oftheanalyses inthis book were performed using ℛ, a free software program- minglanguageandsoftwareenvironmentforstatisticalcomputingandgraphicsthat can be downloaded at http://www.r-project.org. However, instead of relying on canned functions or user-created packages that must be downloaded and installed, I have provided my own code so that readers can see for themselves how the analyses are performed. Moreover, each analysis uses a small (n ¼ 12) data set to encouragereaderstotracktheoperations“inrealtime,”witheachdatasettellinga coherentstorywithinterpretableresults. The codes I have included are not intended to supplant packaged ones in ℛ. Instead,theyareofferedasapedagogicaltool,designedtodemystifytheoperations that underlie each analysis. Toward that end, they are written with an eye toward simplicity, occupying no more than one manuscript page of text. Few of them contain checks for anomalous cases, so they should be used only for the particular analyses for which they are intended. At the end of each section, the relevant functions available in ℛ are identified, ensuring that readers can see how each analysis is performed and have access to the state-of-the-art code that is properly usedforeachstatisticalmodel. Mostofthecodesarecontainedwithineachchapter,allowingreaderstocopyand paste them into ℛ while they are working through the problems in the book. Occasionallyacodeiscalledfromapreviouschapter,inwhichcaseIhavespecified Preface vii afolderlocation:'C:\\ASBS\\code.R'(AdvancedStatisticsfortheBehavioral Sciences)asaplaceholder.Ihavenot,however,createdanℛpackageforthecodeas theyaremeanttobeusedonlyfortheproblemswithinthebook. Intended Audience This book is intended for graduate students in the behavioral sciences who have taken an introductory graduate level course. It consists of 14 chapters, making it suitable for a 15-week semester ora 10-week quarter. This book should also be of interest to intellectually curious researchers who have been using a particular statisticalmethodintheirresearch(e.g.,mixed-effectsmodels)withoutfullyunder- standingthemathematicsbehindtheapproach.Myhopeisthatresearcherswillmore readily embrace advanced statistical analyses once the underlying operations have beenilluminated. Seattle,WA,USA JonathonD.Brown Contents PartI LinearAlgebra 1 LinearEquations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1 RowReductionMethods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.1 GaussianElimination. . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.2 Pivoting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.3 RCode:GaussianEliminationandBackward Substitution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1.4 Gauss-JordanElimination. . . . . . . . . . . . . . . . . . . . . 9 1.1.5 LUDecomposition. . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.1.6 RCode:LUDecomposition. . . . . . . . . . . . . . . . . . . 14 1.1.7 CholeskyDecomposition. . . . . . . . . . . . . . . . . . . . . 15 1.1.8 RCode:CholeskyDecompositionofaSymmetric Matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.2 MatrixMethods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.2.1 Determinant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.2.2 RCode:Determinant. . . . . . . . . . . . . . . . . . . . . . . . 21 1.2.3 DeterminantsandLinearDependencies. . . . . . . . . . . 21 1.2.4 RCode:ReducedRowEchelonFormandLinear Dependencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.2.5 UsingtheDeterminanttoSolveLinearEquations. . . . 23 1.2.6 RCode:Cramer’sRule. . . . . . . . . . . . . . . . . . . . . . . 24 1.2.7 MatrixInverse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.2.8 RCode:CalculateInverseUsingReducedRow EchelonForm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.2.9 Norms,Errors,andtheConditionNumber ofaMatrix. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 26 1.2.10 RCode:ConditionNumberandNormRatio. . . . . . . 33 ix x Contents 1.3 IterativeMethods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 1.3.1 Jacobi’sMethod. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 1.3.2 Gauss-SeidelMethod. . . . . . . . . . . . . . . . . . . . . . . . 35 1.3.3 Convergence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 1.3.4 RCode:Gauss-Seidel. . . . . . . . . . . . . . . . . . . . . . . . 37 1.4 ChapterSummary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2 LeastSquaresEstimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.1 LineofBestFit.. . . . . . .. . . . . . .. . . . . .. . . . . . .. . . . . . .. 39 2.1.1 DerivingaLineofBestFit. . . . . . . . . . . . . . . . . . . . 39 2.1.2 MinimizingtheSumofSquaredDifferences. . . . . . . 41 2.1.3 NormalEquations. . . . . . . . . . .. . . . . . . . . . . . .. . . 42 2.1.4 AnalyticSolution. . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.2 SolvingtheNormalEquations. . . . . . . . . . . . . . . . . . . . . . . . . 43 2.2.1 TheQRDecomposition. . . . . . . . . . . . . . . . . . . . . . 43 2.2.2 AdvantagesofanOrthonormalSystem. . . . . . . . . . . 44 2.2.3 HatMatrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.2.4 Coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.2.5 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.2.6 RCode:QRSolver. . . . . . . . . . . . . . . . . . . . . . . . . 49 2.3 PerformingtheQRDecomposition. . . . . . . . . . . . . . . . . . . . . . 49 2.3.1 Gram-SchmidtOrthogonalization. . . . . . . . . . . . . . . 49 2.3.2 RCode:QRDecomposition;Gram-Schmidt Orthogonalization. . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.3.3 GivensRotations. . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.3.4 RCode:QRDecomposition;GivensRotations. . . . . . 58 2.3.5 HouseholderReflections. . . . . . . . . . . . . . . . . . . . . . 58 2.3.6 RCode:QRDecomposition;Householder Reflectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.3.7 ComparingtheDecompositions. . . . . . . . . . . . . . . . . 61 2.3.8 RCode:QRDecompositionComparison. . . . . . . . . . 62 2.4 LinearRegressionanditsAssumptions. . . . . . . . . . . . . . . . . . . 62 2.4.1 Linearity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.4.2 NatureoftheVariables. . . . . . . . . . . . . . . . . . . . . . . 64 2.4.3 ErrorsandtheirDistribution. . . . . . . . . . . . . . . . . . . 65 2.4.4 RegressionCoefficients. . . . . . . . . . . . . . . . . . . .. . . 67 2.5 OLSEstimationandtheGauss-MarkovTheorem. . . . . . . . . . . 67 2.5.1 ProvingtheOLSEstimatesareUnbiased. . . . . . . . . . 68 2.5.2 ProvingtheOLSEstimatesareEfficient. . . . . . . . . . . 69 2.6 MaximumLikelihoodEstimation. . . . . . . . . . . . . . . . . . . . . . . 71 2.6.1 LogLikelihoodFunction. . . . . . . . . . . . . . . . . . . . . 71 2.6.2 RCode:MaximumLikelihoodEstimation. . . . . . . . . 74 2.7 BeyondOLSEstimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 2.8 ChapterSummary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Contents xi 3 LinearRegression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.1 SimpleLinearRegression. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.1.1 InspectingtheResiduals. . . . . . . . . . . . . . . . . . . . . . 79 3.1.2 DescribingtheModel’sFittotheData. . . . . . . . . . . . 80 3.1.3 TestingtheModel’sFittotheData. . . . . . . . . . . . . . 80 3.1.4 VarianceEstimates. . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.1.5 TestsofSignificance. . . . . . .. . . . . . . . . . . . . . . . . . 82 3.1.6 ConfidenceIntervals. . . . . . . . . . . . . . . . . . . . . . . . . 83 3.1.7 RCode:ConfidenceIntervalSimulation. . . . . . . . . . 83 3.1.8 ConfidenceRegions. . . . . . . . . . . . . . . . . . . . . . . . . 83 3.1.9 Forecasting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.1.10 RCode:SimpleLinearRegression. . . . . . . . . . . . . . 87 3.1.11 RCode:SimpleLinearRegression:Graphs. . . . . . . . 88 3.2 MultipleRegression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.2.1 RegressionModel. . . . .. . . . . . .. . . . . . .. . . . . .. . 90 3.2.2 RegressionCoefficients. . . . . . . . . . . . . . . . . . . .. . . 92 3.2.3 VarianceEstimates,SignificanceTests,and ConfidenceIntervals. . . . . . . . . . . . . . . . . . . . . . . . . 94 3.2.4 ModelComparisonsandChangesinR2. . . . . . . . . . . 95 3.2.5 ComparingPredictors. . . . . . . . . . . . . . . . . . . . . . . . 97 3.2.6 Forecasting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.2.7 RCode:MultipleRegression. . .. . . .. . . .. . .. . . .. 99 3.3 Polynomials,Cross-Products,andCategoricalPredictors. . . . . . 99 3.3.1 PolynomialRegression. . . . . . . . . . . . . . . . . . . . . . . 100 3.3.2 RCode:PolynomialRegression. . . . . . . . . . . . . . . . 105 3.3.3 Cross-ProductTerms. . . . . . . . . . . . . . . . . . . . . . . . 105 3.3.4 RCode:Cross-ProductTermsandSimpleSlopes. . . . 109 3.3.5 Johnson-NeymanProcedure. . . . . . . . . . . . . . . . . . . 110 3.3.6 RCode:Johnson-NeymanProcedure. . . . . . . . . . . . . 111 3.3.7 CategoricalPredictors. . . . . . . . . . . . . . . . . . . . . . . . 111 3.3.8 RCode:ContrastCodesforCategoricalPredictors. . . 113 3.3.9 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 3.4 ChapterSummary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4 EigenDecomposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.1 Diagonalization. . .. . . . . . . .. . . . . . . .. . . . . . . .. . . . . . . .. 117 4.1.1 EigenvectorMultiplication. . . . . . . . . . . . . . . . . . . . 117 4.1.2 TheCharacteristicEquation. . . . . . . . . . . . . . . . . . . 119 4.1.3 RCode:EigenDecompositionofa2(cid:2)2Matrixwith RealEigenvalues. . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.1.4 PropertiesofaDiagonalizedMatrix. . . . . . . . . . . . . . 121 4.2 EigenvalueCalculation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 4.2.1 BasicQRAlgorithm. . . . . . . . . . . . . . . . . . . . . . . . . 122 4.2.2 RCode:QRAlgorithmUsingGram-Schmidt Orthogonalization. . . . . . . . . . . . . . . . . . . . . . . . . . . 124

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.