ebook img

Advanced numerical simulation methods : from CAD data directly to simulation results PDF

332 Pages·2015·6.611 MB·English
by  BeerGernot
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Advanced numerical simulation methods : from CAD data directly to simulation results

Advanced Numerical Simulation Methods Advanced Numerical Simulation Methods From CAD Data Directly to Simulation Results Gernot Beer Institute for Structural Analysis,Graz University ofTechnology, Graz,Austria ThecoverisadisplayoftheCADmodelandthesimulationresults(displacementcontours) fortwotunnelswithacrosspassage(copyrightG.Beer). CoverdesignbyGiselaBeer,BSc(hons)invisualcommunication(MonashUniversity). CRCPress/BalkemaisanimprintoftheTaylor&FrancisGroup,aninformabusiness ©2015Taylor&FrancisGroup,London,UK TypesetbyMPSLimited,Chennai,India PrintedandBoundbyCPIGroup(UK)Ltd,Croydon,CR04YY Allrightsreserved.Nopartofthispublicationortheinformationcontained hereinmaybereproduced,storedinaretrievalsystem,ortransmittedinany formorbyanymeans,electronic,mechanical,byphotocopying,recordingor otherwise,withoutwrittenpriorpermissionfromthepublisher. Althoughallcareistakentoensureintegrityandthequalityofthispublication andtheinformationherein,noresponsibilityisassumedbythepublishersnor theauthorforanydamagetothepropertyorpersonsasaresultofoperation oruseofthispublicationand/ortheinformationcontainedherein. LibraryofCongressCataloging-in-PublicationData Beer,G.(Gernot) Advancednumericalsimulationmethods:fromCADdatadirectlyto simulationresults/GernotBeer. pagescm Includesbibliographicalreferencesandindex. ISBN978-1-138-02634-6(hardcover:alk.paper)–ISBN978-1-315-76631-7 (ebook:alk.paper) 1. Computersimulation. I.Title. QA76.9.C65B44 2015 (cid:1) 003.3–dc23 2015023012 Publishedby: CRCPress/Balkema P.O.Box11320,2301EHLeiden,TheNetherlands e-mail:[email protected] www.crcpress.com–www.taylorandfrancis.com ISBN:978-1-138-02634-6(Hbk) ISBN:978-1-315-76631-7(eBookPDF) Table of contents Preface xi Abouttheauthor xv 1 Introduction 1 1 Abriefhistoryofsimulation 1 1.1 Theworld’sfirstsimulation 1 1.2 Emergenceofmathematicsandmechanics 3 1.3 Computerage 4 2 Basicstepsinsimulation 9 2.1 Geometrydescription 9 2.2 Approximationoftheunknown 11 2.3 Solution 12 2.4 Recoveryoftheresults 12 3 Achangeofparadigm:towardsamoreefficientand accuratesimulation 12 4 Organizationofthetext 13 2 Stage1:Basisfunctions 17 1 One-dimensionalbasisfunctions 17 1.1 LagrangeandSerendipityfunctions 17 1.2 FromB-splinestoNURBS 22 2 Two-dimensionalbasisfunctions 33 2.1 LagrangeandSerendipityfunctions 33 2.2 B-splines 38 2.3 NURBS 38 2.4 T-splines 40 3 Programming 44 4 TheNURBStoolkit 45 5 Summaryandconclusions 51 3 Stage2:Geometry 55 1 Coordinatesystems 55 1.1 Coordinatetransformation 55 2 Curves 56 2.1 MappingwithSerendipity/Lagrangebasisfunctions 56 2.2 MappingwithNURBS 57 vi Table of contents 3 Programming 58 3.1 NURBStoolkit 58 3.2 Geometryfunctions 59 3.3 Examples 63 3.4 Example1:Circulararc 63 3.5 Example2:Horseshoetunnel 65 3.6 Example3:Platewithhole 67 4 Surfaces 68 4.1 MappingwithSerendipity/Lagrangebasisfunctions 69 4.2 MappingwithNURBSbasisfunctions 70 4.3 Programming 71 5 Surfaceofrevolution 73 5.1 Example1:Cylindricalsurface 74 5.2 Example2:Sphericalsurface 75 5.3 Example3:Bellshapedsurface 77 6 Loftedsurfaces 79 7 NURBSsurfaceswithcutouts 81 7.1 AnalysissuitabletrimmedNURBSsurfaces 82 8 InfiniteNURBSpatch 87 8.1 Example 92 9 Summaryandconclusions 93 4 Stage3:ComputerAidedDesign 95 1 Introduction 95 2 IGESdatastructure 98 3 HowCADprogramsdescribegeometry–entitytypes 100 3.1 Lineentity(110) 100 3.2 Surfaceofrevolutionentity(120) 100 3.3 RationalB-splineentity(126) 101 3.4 RationalB-splinesurfaceentity(128) 101 3.5 Boundaryentity(141) 101 4 NURBSsurfaces 102 5 TrimmedNURBSsurfaces 104 6 Summaryandconclusions 113 5 Stage4:Introductiontonumericalsimulation 117 1 One-dimensionalsimulation 117 1.1 Ritzmethod 119 1.2 Approximation 121 2 Stepsinthesimulation 126 2.1 Descriptionofthegeometry 126 2.2 Descriptionofknownvalues 126 2.3 Convergencetests 127 2.4 Approximationofunknown 128 2.5 P-refinementororderelevation 128 2.6 H-refinement,theFiniteElementMethod 128 2.7 Knotinsertion,isogeometricmethod 132 Table of contents vii 2.8 K-refinement 132 2.9 Summaryandconclusions 133 3 2-Dsimulation,planestressandplanestrain 135 3.1 BoundaryConditions(BC) 138 3.2 UsingoneNURBSpatch 140 3.3 ComparisonwithclassicalFEM 141 3.4 Example 142 3.5 MultipleNURBSpatches 143 3.6 Bezièrelements 147 3.7 TrimmedNURBSpatches 148 3.8 Convergencetest 150 4 Summaryandconclusions 150 6 Stage5:Platesandshells 153 1 Kirchhoffplate 153 1.1 Plates 154 1.2 Examples 158 2 Kirchhoffshells 161 2.1 Example1:Scordelisroof 162 2.2 Example2:TrimmedScordelisroof 164 2.3 Example3:ArchedScordelisroof 166 3 Multiplepatches 168 3.1 Assembly 168 3.2 Example 169 4 Summaryandconclusions 172 7 Stage6:Integralequations 175 1 Introduction 175 2 Trefftzmethod 176 2.1 Example 180 2.2 Conclusions 183 3 Integralequations 183 3.1 TheoremofBetti 187 3.2 Rigidbodytrick 191 3.3 Conclusions 193 4 Numericalsolutionofintegralequations 193 4.1 Nyströmmethod 193 4.2 Galerkinmethod 196 4.3 Collocation 196 4.4 Discretisation 197 5 Summaryandconclusions 199 8 Stage7:Theboundaryelementmethodforplaneproblems 201 1 Introduction 201 2 Classicalisoparametricapproach 201 2.1 Numericalevaluationofintegrals 203 viii Table of contents 3 NURBSbasedapproach 206 3.1 Boundaryconditions 210 4 Assemblyofmultiplepatches 211 4.1 PureNeumannproblem 211 4.2 MixedNeumann/Dirichletproblem 211 4.3 Symmetry 212 5 Postprocessing 213 5.1 Resultsontheboundary 213 5.2 Resultsinsidethedomain 214 6 Programming 216 7 Examples 227 7.1 Potentialproblem:Flowpastisolator 227 7.2 Elasticityproblem:Circularexcavationininfinitedomain 229 7.3 Practicalexample:Horseshoetunnel 231 8 Conclusions 233 9 Stage8:Theboundaryelementmethod forthree-dimensionalproblems 235 1 Introduction 235 2 Numericalintegration 236 2.1 Regularintegration 236 2.2 DeterminationoftheoptimalnumberofGausspoints 237 2.3 Regularintegration 238 2.4 Nearlysingularintegration 239 2.5 Weaklysingularintegration 243 2.6 Infinitepatches 246 3 Symmetry 247 4 Multiplepatches 249 5 Postprocessing 249 5.1 Stressrecovery 249 5.2 Internalstresscomputation 251 6 Testexamples 252 6.1 Infinitetunnel 252 6.2 Loadingoninfinitehalf-space 253 7 Examples 253 7.1 Infinitetunnelininfinitedomainneartunnelface 253 7.2 Finitetunnelinasemi-infinitedomain 254 7.3 Branchedtunnel 255 8 Conclusions 260 10 Stage9:Theboundaryelementmethodwithvolumeeffects 263 1 Introduction 263 2 Effectofbodyforcesandinitialstrain 263 2.1 Bodyforces 264 2.2 Effectofinitialstrain 265 2.3 Solution 266 Table of contents ix 3 Implementationforplaneproblems 266 3.1 Geometrydefinition 266 3.2 Computationofthevolumeintegral 268 4 Implementationfor3-Dproblems 268 4.1 Geometrydefinition 269 4.2 Computationofthevolumeintegral 270 5 Iterativesolutionalgorithm 270 6 Inclusions 271 6.1 Computationofbodyforce 273 6.2 Stepsintheanalysis 275 7 Inelasticbehavior 276 7.1 Yieldconditions 277 7.2 Determinationofplasticstrainincrement 278 8 Implementationofplasticityforplaneproblems 280 8.1 Determinationofplasticzone 280 8.2 Computationofthevolumeterm 284 8.3 Numericalintegration 286 8.4 Internalstresscomputation 287 8.5 Extensionofplasticzoneduringiteration 287 9 Implementationfor3-Dproblems 288 9.1 Determinationoftheplasticzone 288 9.2 Computationofthevolumeterm 289 9.3 Numericalintegration 289 10 Programming 289 11 Example 293 12 Summaryandconclusions 295 11 Stage10:Thetimedomain 297 1 Introduction 297 1.1 Bernoullibeamwithmass 297 2 Solutionsinthefrequencydomain 298 2.1 Numericalsolution 299 3 Solutionsinthetimedomain 301 3.1 Finitedifferencemethod 301 3.2 Newmarkmethod 302 4 Programming 306 5 Summaryandconclusions 309 Appendix: Fundamentalsolutions 311 1 Stresssolution(cid:1)(x,y) 312 2 DerivedsolutionfordisplacementS(x,y) 313 3 DerivedsolutionfortractionR(x,y) 314 4 DerivedsolutionfordisplacementS(x,y) 316 5 DerivedsolutionfortractionR(x,y) 317 6 DerivativesofkernelS(x,y) 319 7 DerivativesofkernelR(x,y) 320 Subjectindex 325

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.