Advanced Numerical Simulation Methods Advanced Numerical Simulation Methods From CAD Data Directly to Simulation Results Gernot Beer Institute for Structural Analysis,Graz University ofTechnology, Graz,Austria ThecoverisadisplayoftheCADmodelandthesimulationresults(displacementcontours) fortwotunnelswithacrosspassage(copyrightG.Beer). CoverdesignbyGiselaBeer,BSc(hons)invisualcommunication(MonashUniversity). CRCPress/BalkemaisanimprintoftheTaylor&FrancisGroup,aninformabusiness ©2015Taylor&FrancisGroup,London,UK TypesetbyMPSLimited,Chennai,India PrintedandBoundbyCPIGroup(UK)Ltd,Croydon,CR04YY Allrightsreserved.Nopartofthispublicationortheinformationcontained hereinmaybereproduced,storedinaretrievalsystem,ortransmittedinany formorbyanymeans,electronic,mechanical,byphotocopying,recordingor otherwise,withoutwrittenpriorpermissionfromthepublisher. Althoughallcareistakentoensureintegrityandthequalityofthispublication andtheinformationherein,noresponsibilityisassumedbythepublishersnor theauthorforanydamagetothepropertyorpersonsasaresultofoperation oruseofthispublicationand/ortheinformationcontainedherein. LibraryofCongressCataloging-in-PublicationData Beer,G.(Gernot) Advancednumericalsimulationmethods:fromCADdatadirectlyto simulationresults/GernotBeer. pagescm Includesbibliographicalreferencesandindex. ISBN978-1-138-02634-6(hardcover:alk.paper)–ISBN978-1-315-76631-7 (ebook:alk.paper) 1. Computersimulation. I.Title. QA76.9.C65B44 2015 (cid:1) 003.3–dc23 2015023012 Publishedby: CRCPress/Balkema P.O.Box11320,2301EHLeiden,TheNetherlands e-mail:[email protected] www.crcpress.com–www.taylorandfrancis.com ISBN:978-1-138-02634-6(Hbk) ISBN:978-1-315-76631-7(eBookPDF) Table of contents Preface xi Abouttheauthor xv 1 Introduction 1 1 Abriefhistoryofsimulation 1 1.1 Theworld’sfirstsimulation 1 1.2 Emergenceofmathematicsandmechanics 3 1.3 Computerage 4 2 Basicstepsinsimulation 9 2.1 Geometrydescription 9 2.2 Approximationoftheunknown 11 2.3 Solution 12 2.4 Recoveryoftheresults 12 3 Achangeofparadigm:towardsamoreefficientand accuratesimulation 12 4 Organizationofthetext 13 2 Stage1:Basisfunctions 17 1 One-dimensionalbasisfunctions 17 1.1 LagrangeandSerendipityfunctions 17 1.2 FromB-splinestoNURBS 22 2 Two-dimensionalbasisfunctions 33 2.1 LagrangeandSerendipityfunctions 33 2.2 B-splines 38 2.3 NURBS 38 2.4 T-splines 40 3 Programming 44 4 TheNURBStoolkit 45 5 Summaryandconclusions 51 3 Stage2:Geometry 55 1 Coordinatesystems 55 1.1 Coordinatetransformation 55 2 Curves 56 2.1 MappingwithSerendipity/Lagrangebasisfunctions 56 2.2 MappingwithNURBS 57 vi Table of contents 3 Programming 58 3.1 NURBStoolkit 58 3.2 Geometryfunctions 59 3.3 Examples 63 3.4 Example1:Circulararc 63 3.5 Example2:Horseshoetunnel 65 3.6 Example3:Platewithhole 67 4 Surfaces 68 4.1 MappingwithSerendipity/Lagrangebasisfunctions 69 4.2 MappingwithNURBSbasisfunctions 70 4.3 Programming 71 5 Surfaceofrevolution 73 5.1 Example1:Cylindricalsurface 74 5.2 Example2:Sphericalsurface 75 5.3 Example3:Bellshapedsurface 77 6 Loftedsurfaces 79 7 NURBSsurfaceswithcutouts 81 7.1 AnalysissuitabletrimmedNURBSsurfaces 82 8 InfiniteNURBSpatch 87 8.1 Example 92 9 Summaryandconclusions 93 4 Stage3:ComputerAidedDesign 95 1 Introduction 95 2 IGESdatastructure 98 3 HowCADprogramsdescribegeometry–entitytypes 100 3.1 Lineentity(110) 100 3.2 Surfaceofrevolutionentity(120) 100 3.3 RationalB-splineentity(126) 101 3.4 RationalB-splinesurfaceentity(128) 101 3.5 Boundaryentity(141) 101 4 NURBSsurfaces 102 5 TrimmedNURBSsurfaces 104 6 Summaryandconclusions 113 5 Stage4:Introductiontonumericalsimulation 117 1 One-dimensionalsimulation 117 1.1 Ritzmethod 119 1.2 Approximation 121 2 Stepsinthesimulation 126 2.1 Descriptionofthegeometry 126 2.2 Descriptionofknownvalues 126 2.3 Convergencetests 127 2.4 Approximationofunknown 128 2.5 P-refinementororderelevation 128 2.6 H-refinement,theFiniteElementMethod 128 2.7 Knotinsertion,isogeometricmethod 132 Table of contents vii 2.8 K-refinement 132 2.9 Summaryandconclusions 133 3 2-Dsimulation,planestressandplanestrain 135 3.1 BoundaryConditions(BC) 138 3.2 UsingoneNURBSpatch 140 3.3 ComparisonwithclassicalFEM 141 3.4 Example 142 3.5 MultipleNURBSpatches 143 3.6 Bezièrelements 147 3.7 TrimmedNURBSpatches 148 3.8 Convergencetest 150 4 Summaryandconclusions 150 6 Stage5:Platesandshells 153 1 Kirchhoffplate 153 1.1 Plates 154 1.2 Examples 158 2 Kirchhoffshells 161 2.1 Example1:Scordelisroof 162 2.2 Example2:TrimmedScordelisroof 164 2.3 Example3:ArchedScordelisroof 166 3 Multiplepatches 168 3.1 Assembly 168 3.2 Example 169 4 Summaryandconclusions 172 7 Stage6:Integralequations 175 1 Introduction 175 2 Trefftzmethod 176 2.1 Example 180 2.2 Conclusions 183 3 Integralequations 183 3.1 TheoremofBetti 187 3.2 Rigidbodytrick 191 3.3 Conclusions 193 4 Numericalsolutionofintegralequations 193 4.1 Nyströmmethod 193 4.2 Galerkinmethod 196 4.3 Collocation 196 4.4 Discretisation 197 5 Summaryandconclusions 199 8 Stage7:Theboundaryelementmethodforplaneproblems 201 1 Introduction 201 2 Classicalisoparametricapproach 201 2.1 Numericalevaluationofintegrals 203 viii Table of contents 3 NURBSbasedapproach 206 3.1 Boundaryconditions 210 4 Assemblyofmultiplepatches 211 4.1 PureNeumannproblem 211 4.2 MixedNeumann/Dirichletproblem 211 4.3 Symmetry 212 5 Postprocessing 213 5.1 Resultsontheboundary 213 5.2 Resultsinsidethedomain 214 6 Programming 216 7 Examples 227 7.1 Potentialproblem:Flowpastisolator 227 7.2 Elasticityproblem:Circularexcavationininfinitedomain 229 7.3 Practicalexample:Horseshoetunnel 231 8 Conclusions 233 9 Stage8:Theboundaryelementmethod forthree-dimensionalproblems 235 1 Introduction 235 2 Numericalintegration 236 2.1 Regularintegration 236 2.2 DeterminationoftheoptimalnumberofGausspoints 237 2.3 Regularintegration 238 2.4 Nearlysingularintegration 239 2.5 Weaklysingularintegration 243 2.6 Infinitepatches 246 3 Symmetry 247 4 Multiplepatches 249 5 Postprocessing 249 5.1 Stressrecovery 249 5.2 Internalstresscomputation 251 6 Testexamples 252 6.1 Infinitetunnel 252 6.2 Loadingoninfinitehalf-space 253 7 Examples 253 7.1 Infinitetunnelininfinitedomainneartunnelface 253 7.2 Finitetunnelinasemi-infinitedomain 254 7.3 Branchedtunnel 255 8 Conclusions 260 10 Stage9:Theboundaryelementmethodwithvolumeeffects 263 1 Introduction 263 2 Effectofbodyforcesandinitialstrain 263 2.1 Bodyforces 264 2.2 Effectofinitialstrain 265 2.3 Solution 266 Table of contents ix 3 Implementationforplaneproblems 266 3.1 Geometrydefinition 266 3.2 Computationofthevolumeintegral 268 4 Implementationfor3-Dproblems 268 4.1 Geometrydefinition 269 4.2 Computationofthevolumeintegral 270 5 Iterativesolutionalgorithm 270 6 Inclusions 271 6.1 Computationofbodyforce 273 6.2 Stepsintheanalysis 275 7 Inelasticbehavior 276 7.1 Yieldconditions 277 7.2 Determinationofplasticstrainincrement 278 8 Implementationofplasticityforplaneproblems 280 8.1 Determinationofplasticzone 280 8.2 Computationofthevolumeterm 284 8.3 Numericalintegration 286 8.4 Internalstresscomputation 287 8.5 Extensionofplasticzoneduringiteration 287 9 Implementationfor3-Dproblems 288 9.1 Determinationoftheplasticzone 288 9.2 Computationofthevolumeterm 289 9.3 Numericalintegration 289 10 Programming 289 11 Example 293 12 Summaryandconclusions 295 11 Stage10:Thetimedomain 297 1 Introduction 297 1.1 Bernoullibeamwithmass 297 2 Solutionsinthefrequencydomain 298 2.1 Numericalsolution 299 3 Solutionsinthetimedomain 301 3.1 Finitedifferencemethod 301 3.2 Newmarkmethod 302 4 Programming 306 5 Summaryandconclusions 309 Appendix: Fundamentalsolutions 311 1 Stresssolution(cid:1)(x,y) 312 2 DerivedsolutionfordisplacementS(x,y) 313 3 DerivedsolutionfortractionR(x,y) 314 4 DerivedsolutionfordisplacementS(x,y) 316 5 DerivedsolutionfortractionR(x,y) 317 6 DerivativesofkernelS(x,y) 319 7 DerivativesofkernelR(x,y) 320 Subjectindex 325