Table Of ContentAdvanced
Nanomaterials for
Electrochemical
Energy Conversion
and Storage
Edited by
Rongming Wang and Shuhui Sun
Printed Edition of the Special Issue Published in Nanomaterials
www.mdpi.com/journal/nanomaterials
Advanced Nanomaterials for
Electrochemical Energy Conversion
and Storage
Advanced Nanomaterials for
Electrochemical Energy Conversion
and Storage
Editors
RongmingWang
ShuhuiSun
MDPI•Basel•Beijing•Wuhan•Barcelona•Belgrade•Manchester•Tokyo•Cluj•Tianjin
Editors
RongmingWang ShuhuiSun
UniversityofScienceand InstitutNationaldela
TechnologyBeijing RechercheScientifique(INRS)
China Canada
EditorialOffice
MDPI
St.Alban-Anlage66
4052Basel,Switzerland
This is a reprint of articles from the Special Issue published online in the open access journal
Nanomaterials (ISSN 2079-4991) (available at: https://www.mdpi.com/journal/nanomaterials/
specialissues/EnergyElectrochemical).
Forcitationpurposes,citeeacharticleindependentlyasindicatedonthearticlepageonlineandas
indicatedbelow:
LastName,A.A.;LastName,B.B.;LastName,C.C.ArticleTitle. JournalNameYear,VolumeNumber,
PageRange.
ISBN978-3-0365-5839-4(Hbk)
ISBN978-3-0365-5840-0(PDF)
Coverimagecourtesyof RongmingWang.
©2022bytheauthors. ArticlesinthisbookareOpenAccessanddistributedundertheCreative
Commons Attribution (CC BY) license, which allows users to download, copy and build upon
publishedarticles,aslongastheauthorandpublisherareproperlycredited,whichensuresmaximum
disseminationandawiderimpactofourpublications.
ThebookasawholeisdistributedbyMDPIunderthetermsandconditionsoftheCreativeCommons
licenseCCBY-NC-ND.
Contents
AbouttheEditors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
ZhihongZhangandRongmingWang
Editorial for the Special Issue: “Advanced Nanomaterials for Electrochemical Energy
ConversionandStorage”
Reprintedfrom:Nanomaterials 2022,12,3579,doi:10.3390/
nano12203579 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Xinxing Zhan, Xin Tong, Manqi Gu, Juan Tian, Zijian Gao, Liying Ma, Yadian Xie,
Zhangsen Chen, Hariprasad Ranganathan, Gaixia Zhang and Shuhui Sun
Phosphorus-Doped Graphene Electrocatalysts for Oxygen Reduction Reaction
Reprintedfrom:Nanomaterials 2022,12,1141,doi:10.3390/nano12071141 . . . . . . . . . . . . . . 5
JuzheLiu,RuiHao,BinbinJia,HeweiZhaoandLinGuo
ManipulationonTwo-DimensionalAmorphousNanomaterialsforEnhancedElectrochemical
EnergyStorageandConversion
Reprintedfrom:Nanomaterials 2021,11,3246,doi:10.3390/nano11123246 . . . . . . . . . . . . . . 27
HaoxianChen,JiayiWang,YanZhao,QindanZeng,GuofuZhouandMingliangJin
Three-Dimensionally Ordered Macro/Mesoporous Nb2O5/Nb4N5 Heterostructure as Sulfur
HostforHigh-PerformanceLithium/SulfurBatteries
Reprintedfrom:Nanomaterials 2021,11,1531,doi:10.3390/nano11061531 . . . . . . . . . . . . . . 47
Chong Wang, Jian-Hao Lu, Zi-Long Wang, An-Bang Wang, Hao Zhang, Wei-Kun Wang,
Zhao-QingJinandLi-ZhenFan
SynergisticAdsorption-CatalyticSitesTiN/Ta2O5withMultidimensionalCarbonStructureto
EnableHigh-PerformanceLi-SBatteries
Reprintedfrom:Nanomaterials 2021,11,2882,doi:10.3390/nano11112882 . . . . . . . . . . . . . . 55
XiaoyaLi,YajunZhao,LeiDing,DeqiangWang,QiGuo,ZhiweiLi,HaoLuo,DaweiZhang
andYanYu
Enhancing the Capacity and Stability by CoFe2O4 Modified g-C3N4 Composite for
Lithium-OxygenBatteries
Reprintedfrom:Nanomaterials 2021,11,1088,doi:10.3390/nano11051088 . . . . . . . . . . . . . . 65
Ndeye F. Sylla, Samba Sarr, Ndeye M. Ndiaye, Bridget K. Mutuma, Astou Seck,
Balla D. Ngom, Mohamed Chaker and Ncholu Manyala
Enhanced Electrochemical Behavior of Peanut-Shell Activated Carbon/Molybdenum
Oxide/Molybdenum Carbide Ternary Composites
Reprintedfrom:Nanomaterials 2021,11,1056,doi:10.3390/nano11041056 . . . . . . . . . . . . . 75
YanRongandSipingHuang
Self-Templating Synthesis of N/P/Fe Co-Doped 3D Porous Carbon for Oxygen Reduction
ReactionElectrocatalystsinAlkalineMedia
Reprintedfrom:Nanomaterials 2022,12,2106,doi:10.3390/nano12122106 . . . . . . . . . . . . . . 95
HengLuo,XiaoxuWang,ChubinWan,LuXie,MinhuiSongandPingQian
ATheoreticalStudyofFeAdsorbedonPureandNonmetal(N,F,P,S,Cl)-DopedTi3C2O2for
ElectrocatalyticNitrogenReduction
Reprintedfrom:Nanomaterials 2022,12,1081,doi:10.3390/nano12071081 . . . . . . . . . . . . . . 105
v
ShutaoZhao,XiaoTang,JingliLi,JingZhang,DiYuan,DongweiMaandLinJu
ImprovingtheEnergeticStabilityandElectrocatalyticPerformanceofAu/WSSeSingle-Atom
CatalystwithTensileStrain
Reprintedfrom:Nanomaterials 2022,12,2793,doi:10.3390/nano12162793 . . . . . . . . . . . . . . 119
YongshengZhu,FengxinSun,ChangjunJia,TianmingZhaoandYupengMao
AStretchableandSelf-HealingHybridNano-GeneratorforHumanMotionMonitoring
Reprintedfrom:Nanomaterials 2022,12,104,doi:10.3390/nano12010104 . . . . . . . . . . . . . . 129
PenglinGao,YuanhuaXia,JianGongandXinJu
StructureandMagneticPropertiesofErFexMn12−x(7.0≤x≤9.0,Δx=0.2)
Reprintedfrom:Nanomaterials 2022,12,1586,doi:10.3390/nano12091586 . . . . . . . . . . . . . . 145
HongyuDu,MinZhang,KeYang,BaoheLiandZhenhuiMa
A Self-Assembly of Single Layer of Co Nanorods to Reveal the Magnetostatic Interaction
Mechanism
Reprintedfrom:Nanomaterials 2022,12,2499,doi:10.3390/nano12142499 . . . . . . . . . . . . . . 155
PanpanGao,MinhuiSong,XiaoxuWang,QingLiu,ShizhenHe,YeSuandPingQian
Theoretical Study on the Electronic Structure and Magnetic Properties Regulation of Janus
StructureofM’MCO22DMXenes
Reprintedfrom:Nanomaterials 2022,12,556,doi:10.3390/nano12030556 . . . . . . . . . . . . . . 167
BaoshanCui,ZengtaiZhu,ChuangwenWu,XiaobinGuo,ZhuyangNie,HaoWu,Tengyu
Guo, Peng Chen, Dongfeng Zheng, Tian Yu, Li Xi, Zhongming Zeng, Shiheng Liang,
GuangyuZhang,GuoqiangYuandKangL.Wang
ComprehensiveStudyoftheCurrent-InducedSpin–OrbitTorquePerpendicularEffectiveField
inAsymmetricMultilayers
Reprintedfrom:Nanomaterials 2022,12,1887,doi:10.3390/nano12111887 . . . . . . . . . . . . . . 179
vi
About the Editors
RongmingWang
Rongming Wang, Ph.D., is a professor at the University of Science and Technology Beijing,
DirectoroftheBeijingKeyLaboratoryforMagneto-PhotoelectricalCompositeandInterfaceScience,
and Team Leader for Advanced Functional Material, Beijing Advanced Innovation Center of
MaterialsGenomeEngineering.Hisresearchinterestsincludemagneticnanomaterials,transmission
electron microscopy, interface science, and materials genome engineering. He aims to figure out
thephysicalmechanismattheatomicscalebywhichmicrostructuresinfluencetheproperties. He
has published more than 260 SCI-indexed papers in reputable scientific journals with over 13,000
citations and a H-factor of 61. He has been recognized as a Highly Cited Chinese Researcher by
ElsevierforexceptionalresearchperformanceinthefieldofPhysics.
ShuhuiSun
ShuhuiSun,Ph.D.,isaprofessorintheCenterforEnergy,MaterialsandTelecommunications,
Institut National de la Recherche Scientifique (INRS), Canada. His research interests focus on
the rational design of advanced nanomaterials for clean energy conversion and storage, and
environmentalapplications. HeisaFellowoftheCanadianAcademyofEngineering(CAE,2022)
andaMemberoftheRoyalSocietyofCanada(CollegeofNewScholars,2020),andVicePresidentof
theInternationalAcademyofElectrochemicalEnergyScience(IAOEES).HeservesastheExecutive
Editor-in-ChiefofElectrochemicalEnergyReviews(EER,IF=32.8,Springer-Nature),AssociateEditor
ofSusMat(Wiley),andisaneditorialboardmemberofover10journals
vii
nanomaterials
Editorial
Editorial for the Special Issue: “Advanced Nanomaterials for
Electrochemical Energy Conversion and Storage”
ZhihongZhangandRongmingWang*
BeijingAdvancedInnovationCenterforMaterialsGenomeEngineering,BeijingKeyLaboratoryfor
Magneto-PhotoelectricalCompositeandInterfaceScience,InstituteforMultidisciplinaryInnovation,
SchoolofMathematicsandPhysics,UniversityofScienceandTechnologyBeijing,Beijing100083,China
* Correspondence:[email protected]
Developingefficientandlow-costenergyconversionandstoragedevicesandtech-
nologiesisall-importantissueinordertoachievealow-carbonsociety,whoseperformance
essentiallydependsonthepropertiesofmaterials.Nanomaterialshavebeenextensively
demonstratedtohavegreatpotentialapplicationsinenergyconversionandstoragede-
vicesandtechnologies,i.e.,batteries,capacitors,electrocatalysis,andnanogenerators.On
theotherhand,torealizetheirpracticaluse,furtheroptimizationofthenanomaterials’
structuresandpropertiesisstillneeded.
ThisSpecialIssueaimstocommunicatetherecentadvancesofadvancednanomate-
rialsforenergyconversionandstorage. Itcoversthedesign,synthesis,properties,and
applicationsofadvancednanomaterialsforenergyconversionandstorage. Twelvere-
searchworksfocusonvariousnanomaterialsforbatteries, capacitors, electrocatalysis,
nanogenerators,andmagneticnanomaterials.Furthermore,tworeviewspresenttwokinds
oftwo-dimensional(2D)materials,namely2Damorphousnanomaterialsandphosphorus-
dopedgrapheneinelectrochemicalenergyconversionandstorage.Abriefoverviewofthe
publishedarticlesispresentedinthefollowing,andwehopetoprovideusefulinformation
Citation:Zhang,Z.;Wang,R. forpotentialreaders.
EditorialfortheSpecialIssue: Lithium–sulfur(Li-S)batteriesarereceivingincreasingattentionasnext-generation
“AdvancedNanomaterialsfor high-energy-densitystoragesystems.However,currently,Li-Sbatteriessufferfromlow
ElectrochemicalEnergyConversion volumetricenergydensityandpoorcyclingstabilityduetotheintrinsiclowconductivity
andStorage”.Nanomaterials2022,12, ofsulfuranditsdischargeproduct,lithiumpolysulfideshuttleeffect,andsoon. Many
3579. https://doi.org/10.3390/ strategies have been proposed to improve the performance of Li-S batteries, and one
nano12203579
effectivewayistodesignthe“adsorptive-catalytic”cathode.Chenetal.[1]developeda
Received:20September2022 three-dimensionallyorderedmacro/mesoporousNb2O5/Nb4N5throughinsitunitridation
Accepted:28September2022 to serve as a multi-functional sulfur host. The strong adsorption of Nb2O5 and high
Published:12October2022 conductivityandcatalyticactivityofNb4N5,combinedwiththeporousstructure,enable
Publisher’sNote:MDPIstaysneutral batterieswiththeS/Nb2O5/Nb4N5cathodetoexhibitexcellentcyclingstabilityandhigher
dischargecapacity.Wangetal.[2]adoptedsimilarconcepttoconstructcompositecathodes.
withregardtojurisdictionalclaimsin
publishedmapsandinstitutionalaffil- TheysynthesizedTiN@C/S/Ta2O5withhighsulfurfractionthroughasimpleandlow-
iations. costco-precipitationmethod. BenefitingfromthehighconductivityofTiN,thestrong
adsorptionofTa2O5,andthemicro-andmesoporousstructureofthemultidimensional
carbonstructure,thebatterieswithsuchcathodeshowedsuperiorcyclestabilityandhigh
arealcapacitywithahighsulfurutilization.
Copyright: © 2022 by the authors. Lithium–oxygen(Li-O2)batteriesalsohavehightheoreticalcapacity,butinpractice
Licensee MDPI, Basel, Switzerland. theirenergydensityislessthanhalfthetheoreticalone,duetothegreatenergylossduring
Thisarticleisanopenaccessarticle thecharginganddischargingprocess.Designinghighlyactivecatalystwithlowcostand
distributed under the terms and greatstabilityisoneefficientwaytotackletheproblemandpromotethepracticaluseof
conditionsoftheCreativeCommons Li-O2batteries.Lietal.[3]fabricatedaCoFe2O4/g-C3N4compositecatalystwithCoFe2O4
Attribution(CCBY)license(https:// particlessupportedontheflakyg-C3N4usingascalablefacilemethod. BothCoFe2O4
creativecommons.org/licenses/by/ andg-C3N4 canprovidereactivesitesforthedischarge–chargereaction,andtheflaky
4.0/).
Nanomaterials2022,12,3579.https://doi.org/10.3390/\nano12203579 1 https://www.mdpi.com/journal/nanomaterials
Nanomaterials2022,12,3579
g-C3N4withahighspecificareaandhighchemicalstabilityenabledastrongmasstransfer
abilityandstablesupportforrestrainingtheaggregationofCoFe2O4particles.Underthe
synergisticeffectofCoFe2O4andg-C3N4,theLi-O2batteriesexhibitedimprovedcapacity
andstability.
Superconductorsareanotherimportantenergystoragedeviceswithadvantagesof
high-powerdensityandlonglifetime.Onetypeofsuperconductoristhepseudocapacitor,
wherereversiblefaradic-typeredoxreactionsoccurattheelectrodesurface.Syllaetal.[4]
preparedacompositeelectrodematerialforpseudocapacitors,whereMoO2andMo2C
nanostructureswereincorporatedintoapeanut-shell-activatedcarbon(PAC)network
viaaone-steppyrolysisroute. ThecompositecombinedthehighspecificareaofPAC,
thepseudocapacitiveeffectofMoO2,andthesuperiorconductivityandstabilityofthe
Mo2C,thusdeliveringexcellentcapacitiveperformancewhenusedaselectrodesina
symmetricsupercapacitor.
Intheenergyconversiondevices,thepropertiesofthecatalystdeterminetheirper-
formance,andthusdevelopinglow-cost,highlyactive,andstablecatalystsisofgreat
significancetorealizehigh-efficiencyandhigh-selectivityenergyconversion.Manynano-
materialsexhibitedvariousadvantagesascatalystsduetotheirhighspecificareawhich
canofferabundantactivesites. Carbon-baseddopednanomaterialsaresomeofmost
widely studied catalysts. Rong et al. [5] developed a self-template-assisted pyrolysis
routetoprepareathree-dimensionalnanoporouscarbonstructureco-dopedwithN/P/Fe.
Thesynthesisprocessissimple,avoidingtheextraprocessoftemplateremoval,andthe
distributionandcontentofN/P/Fecanbewellcontrolled.Thepreparedcatalystsexhib-
itedsuperioroxygenreductionreactioncatalyticactivityanddurabilitycomparedtothe
currentlyadvancedPt/Ccatalysts.
Two-dimensionalmaterialshavealsoattractedextensiveattentioninthecatalysis
field.Graphenehasahighspecificsurfacearea,highstability,andexcellentconductivity,
makingitapromisingcandidateforcatalyst.However,thepristinegrapheneissemimetal
withnobandgapandshowspoorcatalyticactivity.Heteroatomdopingcouldgreatlyalter
theelectronicpropertiesandimprovethecatalyticactivityofgraphene. Zhanetal.[6]
reviewedrecentadvancesinP-dopedgrapheneelectrocatalystsfortheoxygenreduction
reaction,includingthesynthesisandperformanceofthematerialsandcatalyticmechanism.
MXenes,asanewmemberof2Dmaterials,havealsobeendemonstratedtohavegreat
potentialintheelectrocatalysisprocess.Luoetal.[7]studiedhowtheFeatomadsorption
onpureordopedTi3C2O2affectedthecatalyticperformanceofthenitrogenreduction
reactionusingthedensityfunctionaltheory(DFT)Theyfoundthechargetransferofthe
adsorbedFeatomstoN2couldpromotethehydrogenationofN2andthusimprovethe
catalyticperformance.Two-dimensionalmaterialssupportedsingle-atomcatalystswhich
exhibituniquecatalyticperformance,representoneofthehottopicsinthecatalysisfield.
Zhaoetal.[8]designedasingle-atomcatalystAu/WSSebyfillingthesingleAuatom
attheSvacancysiteintheJanusWSSemonolayer. ByDFTcalculation,theyfoundthe
strong binding between the single Au atom and the WSSe resulted from the electron
transferandorbitalhybridizationbetweenAuandW.Moreover,thetensilestraininthe
supportcouldfurtherimprovetheelectrocatalyticperformanceinthehydrogenevolution
reactionoftheAu/WSSecatalyst. Infact,duetotheiruniquestructureandexcellent
properties,2Dmaterialshavebeenwidelyinvestigatedinelectrochemicalfields,notonly
theelectrocatalyst,butalsothebatteriesandsupercapacitor.Liuetal.[9]focusedonthe
2Damorphousnanomaterialsandsummarizedvariousregulationstrategies,including
compositionandstructuredesign,toenhancetheelectrochemicalperformanceforthe
batteries,supercapacitors,andelectrocatalysts.
Thenanogeneratorisakindofmirco-nanodevicethatcanrealizeenergyconversion.
Since the first piezoelectric nano-generator (PENG) came onto the scene, the concept,
mechanism,andapplicationsofnanogeneratorshavebeenwidelystudiedandmadegreat
progress.Zhuetal.[10]developedaself-poweredsportsensorwhichwascomposedofa
triboelectricnanogenerator(TENG),aPENG,andaflexibletransparentstretchableself-
2
Nanomaterials2022,12,3579
healinghydrogelelectrode.Thepreparedsensorisstretchable,wearable,andtransparent,
andcanbeusedtomonitorhumanthree-dimensionalmotions.
Magneticmaterialsprovideanalternatesourceofcleanandrenewableenergy,and
alsoplayanirreplaceableroleinenergyconversionandstorage.Researchesonthephysics
andpropertiesofmagneticmaterialsareessentialtorealizetheiroptimizationforenergy
application.Gaoetal.[11]preparedtheErFexMn12−xseriesalloysampleswithΔx=0.2us-
ingthearcmeltingmethod,andachievedadetailedmagneticphasediagramofthesamples.
Theyalsostudiedtheexchangebiaseffectandmagnetocaloriceffectinsuchamagnetic
alloy. Nano-magneticmaterialswithsmallsizeanduniquemagneticpropertieshave
playedvitalrolesinmanyfieldsandtheirpropertiescanbemodulatedbydistinctstrate-
gies.Duetal.[12]developedaself-assemblymethodtoprepareasinglelayerofaligned
Conanorodstoobtainimprovedmagneticperformance.Theyalsostudiedthemagnetic
interactionofConanorodswithdifferentshapes,offeringguidancetothemagnetostatic
interactionofshapeanisotropicmagneticnanostructures.Gaoetal.[13]investigatedthe
magneticandelectronicpropertiesofJanusMXene(M’MCO2,M’andM=V,Cr,andMn)
viafirst-principlescalculationsandtheyfoundthatthetransitionmetalandconfiguration
couldtunethebandgap,themagneticgroundstate,andthenetoutputmagneticmoments
oftheJanusMXenematerials. Theworkpointsoutanewpathtodesignandregulate
novelmagneticmaterials. Cuietal.[14]synthesizedlaterallyasymmetricheavymetal
(HM)/ferromagneticmetal(FM)multilayersbygrowingtheFMlayerinawedgeshape,
andstudiedfield-freespin–orbittorques(SOTs)switchingintheasymmetricmultilayers.
TheyfoundthattheswitchingefficiencystronglydependedontheHM/FMinterfaceand
theFMlayerthickness.
InthisSpecialIssue,someoriginalresearchworksandhigh-qualityreviewsonthe
advancednanomaterialsforenergyconversionandstoragearepresented,andwehope
thatthesearticlesproveinformativeandinstructiveforreaders.Theresearchinthisfieldis
boomingandgreatadvancesinthedevelopmentofefficient,clean,andsustainableenergy
devicesandtechnologiesareexpected.
Funding:ThisworkwassupportedbytheBeijingNaturalScienceFoundation(No.2212034),the
NationalNaturalScienceFoundationofChina(Nos.51971025and12034002),andtheFundamental
ResearchFundsfortheCentralUniversities(Nos.06108248and06500235).
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.
References
1. Chen,H.;Wang,J.;Zhao,Y.;Zeng,Q.;Zhou,G.;Jin,M.Three-DimensionallyOrderedMacro/MesoporousNb2O5/Nb4N5Hetero-
structureasSulfurHostforHigh-PerformanceLithium/SulfurBatteries.Nanomaterials2021,11,1531.[CrossRef][PubMed]
2. Wang,C.;Lu,J.H.;Wang,Z.L.;Wang,A.B.;Zhang,H.;Wang,W.K.;Jin,Z.Q.;Fan,L.Z.SynergisticAdsorption-CatalyticSites
TiN/Ta2O5withMultidimensionalCarbonStructuretoEnableHigh-PerformanceLi-SBatteries.Nanomaterials2021,11,2882.
[CrossRef][PubMed]
3. Li,X.;Zhao,Y.;Ding,L.;Wang,D.;Guo,Q.;Li,Z.;Luo,H.;Zhang,D.;Yu,Y.EnhancingtheCapacityandStabilitybyCoFe2O4
Modifiedg-C3N4CompositeforLithium-OxygenBatteries.Nanomaterials2021,11,1088.[CrossRef][PubMed]
4. Sylla,N.F.;Sarr,S.;Ndiaye,N.M.;Mutuma,B.K.;Seck,A.;Ngom,B.D.;Chaker,M.;Manyala,N.EnhancedElectrochemical
BehaviorofPeanut-ShellActivatedCarbon/MolybdenumOxide/MolybdenumCarbideTernaryComposites.Nanomaterials2021,
11,1056.[CrossRef][PubMed]
5. Rong, Y.; Huang, S.Self-TemplatingSynthesisofN/P/FeCo-Doped3DPorousCarbonforOxygenReductionReaction
ElectrocatalystsinAlkalineMedia.Nanomaterials2022,12,2106.[CrossRef][PubMed]
6. Zhan,X.;Tong,X.;Gu,M.;Tian,J.;Gao,Z.;Ma,L.;Xie,Y.;Chen,Z.;Ranganathan,H.;Zhang,G.;etal. Phosphorus-Doped
GrapheneElectrocatalystsforOxygenReductionReaction.Nanomaterials2022,12,1141.[CrossRef][PubMed]
7. Luo,H.;Wang,X.;Wan,C.;Xie,L.;Song,M.;Qian,P.ATheoreticalStudyofFeAdsorbedonPureandNonmetal(N,F,P,S,
Cl)-DopedTi3C2O2forElectrocatalyticNitrogenReduction.Nanomaterials2022,12,1081.[CrossRef][PubMed]
8. Zhao,S.;Tang,X.;Li,J.;Zhang,J.;Yuan,D.;Ma,D.;Ju,L.ImprovingtheEnergeticStabilityandElectrocatalyticPerformanceof
Au/WSSeSingle-AtomCatalystwithTensileStrain.Nanomaterials2022,12,2793.[CrossRef][PubMed]
9. Liu,J.;Hao,R.;Jia,B.;Zhao,H.;Guo,L.ManipulationonTwo-DimensionalAmorphousNanomaterialsforEnhancedElectro-
chemicalEnergyStorageandConversion.Nanomaterials2021,11,3246.[CrossRef][PubMed]
3