ebook img

Advanced Methods and Deep Learning in Computer Vision (Computer Vision and Pattern Recognition) PDF

584 Pages·2021·25.674 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Advanced Methods and Deep Learning in Computer Vision (Computer Vision and Pattern Recognition)

ADVANCED METHODS AND DEEP LEARNING IN COMPUTER VISION This page intentionally left blank Computer Vision and Pattern Recognition ADVANCED METHODS AND DEEP LEARNING IN COMPUTER VISION Editedby E.R. Davies Matthew A. Turk AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1650,SanDiego,CA92101,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom Copyright©2022ElsevierInc.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical, includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthe publisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefound atourwebsite:www.elsevier.com/permissions. ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmay benotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusingany information,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbe mindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforany injuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseor operationofanymethods,products,instructions,orideascontainedinthematerialherein. LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary ISBN:978-0-12-822109-9 ForinformationonallAcademicPresspublications visitourwebsiteathttps://www.elsevier.com/books-and-journals Publisher:MaraConner AcquisitionsEditor:TimPitts EditorialProjectManager:IsabellaC.Silva ProductionProjectManager:SojanP.Pazhayattil Designer:GregHarris TypesetbyVTeX Thisbookisdedicatedtomyfamily. Tocherishedmemoriesofmyparents,ArthurandMaryDavies. Tomywife,Joan,forlove,patience,supportandinspiration. Tomychildren,Elizabeth,SarahandMarion,andgrandchildren,Jasper,Jerome,Eva,TaraandPia, forbringingendlessjoyintomylife! RoyDavies Thisbookisdedicatedtothestudents,colleagues,friends,andfamilywhohavemotivated,guided, andsupportedmeinwaystoonumeroustomention. Tomywife,Kelly,andmychildren,HannahandMatt–specialthanksandappreciationforyourlove andinspiration. MatthewTurk This page intentionally left blank Contents List of contributors xi 2.13 Conclusion 115 About the editors xiii References 116 Preface xv 3. Learningwithlimitedsupervision 1. Thedramaticallychangingfaceof SUJOYPAULANDAMITK.ROY-CHOWDHURY computervision 3.1 Introduction 119 E.R.DAVIES 3.2 Context-awareactivelearning 120 3.3 Weaklysupervisedevent 1.1 Introduction–computervisionandits localization 129 origins 1 3.4 Domainadaptationofsemantic 1.2 PartA–Understandinglow-levelimage segmentationusingweaklabels 137 processingoperators 4 3.5 Weakly-supervisedreinforcementlearning 1.3 PartB–2-Dobjectlocationand fordynamicaltasks 144 recognition 15 3.6 Conclusions 151 1.4 PartC–3-Dobjectlocationandthe References 153 importanceofinvariance 29 1.5 PartD–Trackingmovingobjects 55 4. Efficientmethodsfordeeplearning 1.6 PartE–Textureanalysis 61 1.7 PartF–Fromartificialneuralnetworksto HANCAI,JILIN,ANDSONGHAN deeplearningmethods 68 1.8 PartG–Summary 86 4.1 Modelcompression 159 References 87 4.2 Efficientneuralnetwork architectures 170 2. Advancedmethodsforrobustobject 4.3 Conclusion 185 detection References 185 ZHAOWEICAIANDNUNOVASCONCELOS 5. Deepconditionalimagegeneration 2.1 Introduction 93 GANGHUAANDDONGDONGCHEN 2.2 Preliminaries 95 2.3 R-CNN 96 5.1 Introduction 191 2.4 SPP-Net 97 5.2 Visualpatternlearning:abrief 2.5 FastR-CNN 98 review 194 2.6 FasterR-CNN 101 5.3 Classicalgenerativemodels 195 2.7 CascadeR-CNN 103 5.4 Deepgenerativemodels 197 2.8 Multiscalefeaturerepresentation 106 5.5 Deepconditionalimagegeneration 200 2.9 YOLO 110 5.6 Disentanglementforcontrollable 2.10 SSD 112 synthesis 201 2.11 RetinaNet 113 5.7 Conclusionanddiscussions 216 2.12 Detectionperformances 115 References 216 vii viii Contents 6. Deepfacerecognitionusingfulland 9.3 Online-learning-basedmethods 314 partialfaceimages 9.4 Deeplearning-basedmethods 323 9.5 Thetransitionfromtrackingto HASSANUGAIL segmentation 327 9.6 Conclusions 331 6.1 Introduction 221 References 332 6.2 Componentsofdeepface recognition 227 10. Long-termdeepobjecttracking 6.3 Facerecognitionusingfullface images 231 EFSTRATIOSGAVVESANDDEEPAKGUPTA 6.4 Deepfacerecognitionusingpartialface data 233 10.1 Introduction 337 6.5 Specificmodeltrainingforfullandpartial 10.2 Short-termvisualobjecttracking 341 faces 237 10.3 Long-termvisualobjecttracking 345 6.6 Discussionandconclusions 239 10.4 Discussion 367 References 240 References 368 7. Unsuperviseddomainadaptationusing 11. Learningforaction-basedscene shallowanddeeprepresentations understanding YOGESHBALAJI,HIENNGUYEN,ANDRAMACHELLAPPA CORNELIAFERMÜLLERANDMICHAELMAYNORD 7.1 Introduction 243 11.1 Introduction 373 7.2 Unsuperviseddomainadaptationusing 11.2 Affordancesofobjects 375 manifolds 244 11.3 Functionalparsingofmanipulation 7.3 Unsuperviseddomainadaptationusing actions 383 dictionaries 247 11.4 Functionalsceneunderstandingthrough 7.4 Unsuperviseddomainadaptationusingdeep deeplearningwithlanguageand networks 258 vision 390 7.5 Summary 270 11.5 Futuredirections 397 References 270 11.6 Conclusions 399 References 399 8. Domainadaptationandcontinual learninginsemanticsegmentation 12. Self-supervisedtemporalevent segmentationinspiredbycognitivetheories UMBERTOMICHIELI,MARCOTOLDO,AND PIETROZANUTTIGH RAMYMOUNIR,SATHYANARAYANANAAKUR,AND SUDEEPSARKAR 8.1 Introduction 275 8.2 Unsuperviseddomainadaptation 277 12.1 Introduction 406 8.3 Continuallearning 291 12.2 Theeventsegmentationtheoryfrom 8.4 Conclusion 298 cognitivescience 408 References 299 12.3 Version1:single-passtemporalsegmentation usingprediction 410 9. Visualtracking 12.4 Version2:segmentationusing attention-basedeventmodels 421 MICHAELFELSBERG 12.5 Version3:spatio-temporallocalizationusing predictionlossmap 428 9.1 Introduction 305 12.6 Othereventsegmentationapproachesin 9.2 Template-basedmethods 308 computervision 440 ix Contents 12.7 Conclusions 443 14.3 Deepplug-and-playimage References 444 restoration 485 14.4 Deepunfoldingimagerestoration 492 13. Probabilisticanomalydetection 14.5 Experiments 495 14.6 Discussionandconclusions 504 methodsusinglearnedmodelsfrom References 505 time-seriesdataformultimediaself-aware systems 15. Visualadversarialattacksanddefenses CARLOREGAZZONI,ALIKRAYANI,GIULIASLAVIC,AND LUCIOMARCENARO CHANGJAEOH,ALESSIOXOMPERO,AND ANDREACAVALLARO 13.1 Introduction 450 15.1 Introduction 511 13.2 Baseconceptsandstateoftheart 451 15.2 Problemdefinition 512 13.3 Frameworkforcomputinganomalyin 15.3 Propertiesofanadversarialattack 514 self-awaresystems 458 15.4 Typesofperturbations 515 13.4 Casestudyresults:anomalydetectionon 15.5 Attackscenarios 515 multisensorydatafromaself-aware 15.6 Imageprocessing 522 vehicle 467 15.7 Imageclassification 523 13.5 Conclusions 476 15.8 Semanticsegmentationandobject References 477 detection 529 15.9 Objecttracking 529 14. Deepplug-and-playanddeepunfolding 15.10 Videoclassification 531 methodsforimagerestoration 15.11 Defensesagainstadversarialattacks 533 15.12 Conclusions 537 KAIZHANGANDRADUTIMOFTE References 538 14.1 Introduction 481 Index 545 14.2 Halfquadraticsplitting(HQS) algorithm 484

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.