ebook img

Advanced Man-Machine Interaction: Fundamentals and Implementation PDF

471 Pages·2006·15.981 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Advanced Man-Machine Interaction: Fundamentals and Implementation

Karl-FriedrichKraiss(Ed.) AdvancedMan-MachineInteraction Karl-Friedrich Kraiss (Ed.) Advanced Man-Machine Interaction FundamentalsandImplementation With280Figures 123 Editor ProfessorDr.-Ing.Karl-FriedrichKraiss RWTHAachenUniversity ChairofTechnicalComputerScience Ahornstraße55 52074Aachen Germany [email protected] LibraryofCongressControlNumber:2005938888 ISBN-10 3-540-30618-8 SpringerBerlinHeidelbergNewYork ISBN-13 978-3-540-30618-4 SpringerBerlinHeidelbergNewYork Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerial is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplication ofthispublicationorpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyright LawofSeptember9,1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfrom Springer.ViolationsareliableforprosecutionundertheGermanCopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia springer.com ©Springer-VerlagBerlinHeidelberg2006 PrintedinGermany Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnot imply, even in the absence of a specific statement, thatsuch names are exempt from the relevant protectivelawsandregulationsandthereforefreeforgeneraluse. Typesetting:Digitaldatasuppliedbyeditor CoverDesign:design&productionGmbH,Heidelberg Production:LE-TEXJelonek,Schmidt&VöcklerGbR,Leipzig Printedonacid-freepaper 7/3100/YL 543210 To:Eva, Gregor, Lucas, Martin,and Robert. Preface Thewayinwhichhumansinteractwithmachineshaschangeddramaticallyduring thelastfifty years.Drivenbydevelopmentsin softwareandhardwaretechnologies new appliances never thought of some years ago appear on the market. There are apparentlyno limits to the functionalityof personalcomputersor mobile telecom- municationappliances.Intelligenttrafficsystemspromiseformerlyunknownlevels ofsafety.Cooperationbetweenfactoryworkersandsmartautomationisunderway inindustrialproduction.Telepresenceandteleoperationsinspace,underwaterorin microworldsismadepossible.Mobilerobotsprovideservicesondutyandathome. As,unfortunately,humanevolutiondoesnotkeeppacewithtechnology,weface problemsindealingwiththisbravenewworld.Manyindividualshaveexperienced minorormajorcalamitieswhenusingcomputersforbusinessorinprivate.Theel- derly and people with special needs often refrain altogether from capitalizing on modern technology. Statistics indicate that in traffic systems at least two of three accidentsarecausedbyhumanerror. In this situation man-machineinterfacedesign is widely recognizedas a major challenge. It represents a key technology,which promises excellent pay-offs.As a majormarketingfactoritalsosecuresacompetitiveedgeovercontenders. Thepurposeofthisbookistoprovidedeepinsightintonovelenablingtechnolo- gies of man-machine interfaces. This includes multimodal interaction by mimics, gesture, and speech, video based biometrics, interaction in virtual reality and with robots,andtheprovisionofuserassistance.Alltheseareinnovativeandstilldynam- icallydevelopingresearchareas. The concept of this book is based on my lectures on man-machine systems heldregularlyforstudentsinelectricalengineeringandcomputerscienceatRWTH AachenUniversityandonresearchperformedduringthelastyearsatthischair. Thecompilationofthematerialswouldnothavebeenpossiblewithoutcontribu- tionsof numerouspeoplewho workedwith me overthe yearson varioustopicsof man-machineinteraction.Severalchaptersareauthoredbyformerorcurrentdoctoral students. Some chaptersbuild in parton earlier work of formercoworkersas, e.g., Suat Akyol, Pablo Alvarado, Ingo Elsen, Kirsti Grobel, Hermann Hienz, Thomas Kru¨ger,DirkKrumbiegel,RolandSteffan,PeterWalter,andJochenWickel.There- foretheirworkdeservesmentioningaswell. To providea well balancedand complete view on the topic the volume further contains two chapters by Professor Gerhard Rigoll from Technical University of Munich and by Professor Ru¨diger Dillmann from Karlsruhe University. I’m very muchindebtedtobothfortheircontributions.Ialsowishtoexpressmygratitudeto EvaHestermann-BeyerleandtoMonikaLempefromSpringerVerlag:totheformer for triggering the writing of this book, and to both for provided helpful support duringitspreparation. VIII Preface I am deeply indebted to Jo¨rg Zieren for administrating a central repository for the various manuscripts and for making sure that the guidelines were accurately followed.AlsoLarsLibudadeservessincerethanksforundertakingthetediouswork ofcomposingandtesting thebooksCD.Theassistance ofbothwasa fundamental prerequisiteformeetingthegivendeadline. FinallyspecialthanksgotomywifeCorneliaforunwaveringsupport,and,more general,forsharinglifewithme. Aachen,December2005 Karl-FriedrichKraiss Table of Contents 1 Introduction.................................................. 1 2 Non-IntrusiveAcquisitionofHumanAction ....................... 7 2.1 HandGestureCommands ........................................ 7 2.1.1 ImageAcquisitionandInputData......................... 8 2.1.1.1 Vocabulary ..................................... 8 2.1.1.2 RecordingConditions ............................ 9 2.1.1.3 ImageRepresentation ............................ 10 2.1.1.4 Example ....................................... 11 2.1.2 FeatureExtraction...................................... 12 2.1.2.1 HandLocalization ............................... 14 2.1.2.2 RegionDescription .............................. 20 2.1.2.3 GeometricFeatures .............................. 22 2.1.2.4 Example ....................................... 27 2.1.3 FeatureClassification ................................... 29 2.1.3.1 ClassificationConcepts........................... 29 2.1.3.2 ClassificationAlgorithms ......................... 31 2.1.3.3 FeatureSelection ................................ 32 2.1.3.4 Rule-basedClassification ......................... 33 2.1.3.5 MaximumLikelihoodClassification ................ 34 2.1.3.6 ClassificationUsingHiddenMarkovModels......... 37 2.1.3.7 Example ....................................... 47 2.1.4 StaticGestureRecognitionApplication .................... 48 2.1.5 DynamicGestureRecognitionApplication ................. 50 2.1.6 Troubleshooting........................................ 56 2.2 FacialExpressionCommands..................................... 56 2.2.1 ImageAcquisition...................................... 59 2.2.2 ImagePreprocessing.................................... 60 2.2.2.1 FaceLocalization................................ 61 2.2.2.2 FaceTracking................................... 67 2.2.3 FeatureExtractionwithActiveAppearanceModels .......... 68 2.2.3.1 AppearanceModel............................... 73 2.2.3.2 AAMSearch.................................... 75 2.2.4 FeatureClassification ................................... 78 2.2.4.1 HeadPoseEstimation ............................ 78 2.2.4.2 DeterminationofLineofSight..................... 83 2.2.4.3 CircleHoughTransformation...................... 83 2.2.4.4 DeterminationofLipOutline ...................... 87 2.2.4.5 Lipmodeling ................................... 88 2.2.5 FacialFeatureRecognition–EyeLocalizationApplication.... 90 2.2.6 FacialFeatureRecognition–MouthLocalizationApplication . 90 X TableofContents References ......................................................... 92 3 SignLanguageRecognition ..................................... 95 3.1 RecognitionofIsolatedSignsinReal-WorldScenarios................ 99 3.1.1 ImageAcquisitionandInputData......................... 101 3.1.2 ImagePreprocessing.................................... 102 3.1.2.1 BackgroundModeling............................ 102 3.1.3 FeatureExtraction...................................... 105 3.1.3.1 OverlapResolution .............................. 106 3.1.3.2 HandTracking .................................. 107 3.1.4 FeatureNormalization .................................. 109 3.1.5 FeatureClassification ................................... 110 3.1.6 TestandTrainingSamples ............................... 110 3.2 SignRecognitionUsingNonmanualFeatures........................ 111 3.2.1 NonmanualParameters.................................. 111 3.2.2 ExtractionofNonmanualFeatures ........................ 113 3.3 RecognitionofcontinuousSignLanguageusingSubunits ............. 116 3.3.1 SubunitModelsforSigns................................ 116 3.3.2 TranscriptionofSignLanguage........................... 118 3.3.2.1 Linguistics-orientatedTranscriptionofSignLanguage. 118 3.3.2.2 Visually-orientatedTranscriptionofSignLanguage ... 121 3.3.3 SequentialandParallelBreakdownofSigns ................ 122 3.3.4 ModificationofHMMstoParallelHiddenMarkovModels.... 122 3.3.4.1 ModelingSignLanguagebymeansofPaHMMs...... 124 3.3.5 Classification .......................................... 125 3.3.5.1 ClassificationofSingleSignsbyMeansofSubunits andPaHMMs ................................... 125 3.3.5.2 ClassificationofContinuousSignLanguagebyMeans ofSubunitsandPaHMMs......................... 126 3.3.5.3 StochasticLanguageModeling .................... 127 3.3.6 Training .............................................. 128 3.3.6.1 InitialTranscription.............................. 129 3.3.6.2 EstimationofModelParametersforSubunits ........ 131 3.3.6.3 ClassificationofSingleSigns...................... 132 3.3.7 ConcatenationofSubunitModelstoWordModelsforSigns. .. 133 3.3.8 EnlargementofVocabularySizebyNewSigns.............. 133 3.4 PerformanceEvaluation.......................................... 134 3.4.1 Video-basedIsolatedSignRecognition .................... 135 3.4.2 SubunitBasedRecognitionofSignsandContinuousSign Language ............................................. 136 3.4.3 Discussion ............................................ 137 References ......................................................... 137 TableofContents XI 4 SpeechCommunicationandMultimodalInterfaces.................141 4.1 SpeechRecognition ............................................. 141 4.1.1 Fundamentalsof Hidden MarkovModel-basedSpeech Recognition ........................................... 142 4.1.2 TrainingofSpeechRecognitionSystems ................... 144 4.1.3 RecognitionPhaseforHMM-basedASRSystems ........... 145 4.1.4 InformationTheoryInterpretationof Automatic Speech Recognition ........................................... 147 4.1.5 SummaryoftheAutomaticSpeechRecognitionProcedure.... 149 4.1.6 SpeechRecognitionTechnology .......................... 150 4.1.7 ApplicationsofASRSystems ............................ 151 4.2 SpeechDialogs................................................. 153 4.2.1 Introduction ........................................... 153 4.2.2 InitiativeStrategies ..................................... 155 4.2.3 ModelsofDialog....................................... 156 4.2.3.1 FiniteStateModel ............................... 156 4.2.3.2 SlotFilling ..................................... 157 4.2.3.3 StochasticModel ................................ 158 4.2.3.4 GoalDirectedProcessing ......................... 159 4.2.3.5 RationalConversationalAgents.................... 160 4.2.4 DialogDesign ......................................... 162 4.2.5 ScriptingandTagging................................... 163 4.3 MultimodalInteraction .......................................... 164 4.3.1 In-andOutputChannels................................. 165 4.3.2 BasicsofMultimodalInteraction.......................... 166 4.3.2.1 Advantages..................................... 167 4.3.2.2 Taxonomy...................................... 167 4.3.3 MultimodalFusion ..................................... 168 4.3.3.1 IntegrationMethods.............................. 169 4.3.4 ErrorsinMultimodalSystems ............................ 172 4.3.4.1 ErrorClassification .............................. 172 4.3.4.2 UserSpecificErrors.............................. 172 4.3.4.3 SystemSpecificErrors ........................... 173 4.3.4.4 ErrorAvoidance................................. 173 4.3.4.5 ErrorResolution................................. 174 4.4 EmotionsfromSpeechandFacialExpressions....................... 175 4.4.1 Background ........................................... 175 4.4.1.1 ApplicationScenarios ............................ 175 4.4.1.2 Modalities...................................... 176 4.4.1.3 EmotionModel ................................. 176 4.4.1.4 EmotionalDatabases............................. 177 4.4.2 AcousticInformation ................................... 177 4.4.2.1 FeatureExtraction ............................... 178 4.4.2.2 FeatureSelection ................................ 179 4.4.2.3 ClassificationMethods ........................... 180 XII TableofContents 4.4.3 LinguisticInformation .................................. 180 4.4.3.1 N-Grams....................................... 181 4.4.3.2 Bag-of-Words................................... 182 4.4.3.3 PhraseSpotting ................................. 182 4.4.4 VisualInformation...................................... 183 4.4.4.1 Prerequisites.................................... 184 4.4.4.2 HolisticApproaches ............................. 184 4.4.4.3 AnalyticApproaches............................. 186 4.4.5 InformationFusion ..................................... 186 4.4.6 Discussion ............................................ 187 References ......................................................... 187 5 PersonRecognitionandTracking ................................191 5.1 FaceRecognition ............................................... 193 5.1.1 ChallengesinAutomaticFaceRecognition ................. 193 5.1.2 StructureofFaceRecognitionSystems..................... 196 5.1.3 CategorizationofFaceRecognitionAlgorithms ............. 200 5.1.4 GlobalFaceRecognitionusingEigenfaces.................. 201 5.1.5 Local Face Recognitionbased on Face Componentsor TemplateMatching ..................................... 206 5.1.6 FaceDatabasesforDevelopmentandEvaluation ............ 212 5.1.7 Exercises ............................................. 214 5.1.7.1 ProvidedImagesandImageSequences.............. 214 5.1.7.2 FaceRecognitionUsingtheEigenfaceApproach ..... 215 5.1.7.3 FaceRecognitionUsingFaceComponents........... 221 5.2 Full-bodyPersonRecognition..................................... 224 5.2.1 StateoftheArtinFull-bodyPersonRecognition ............ 224 5.2.2 ColorFeaturesforPersonRecognition..................... 226 5.2.2.1 ColorHistograms................................ 226 5.2.2.2 ColorStructureDescriptor ........................ 227 5.2.3 TextureFeaturesforPersonRecognition ................... 228 5.2.3.1 OrientedGaussianDerivatives ..................... 228 5.2.3.2 HomogeneousTextureDescriptor .................. 229 5.2.4 ExperimentalResults ................................... 231 5.2.4.1 ExperimentalSetup .............................. 231 5.2.4.2 FeaturePerformance ............................. 231 5.3 Camera-basedPeopleTracking.................................... 232 5.3.1 Segmentation .......................................... 234 5.3.1.1 ForegroundSegmentationbyBackgroundSubtraction . 234 5.3.1.2 MorphologicalOperations ........................ 236 5.3.2 Tracking .............................................. 237 5.3.2.1 TrackingFollowingDetection ..................... 238 5.3.2.2 CombinedTrackingandDetection.................. 243 5.3.3 OcclusionHandling..................................... 248 5.3.3.1 OcclusionHandlingwithoutSeparation ............. 248

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.