ebook img

Advanced Engineering Mathematics with Mathematica (Solution manual) PDF

157 Pages·2020·25.384 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Advanced Engineering Mathematics with Mathematica (Solution manual)

Solution Manual 1 Solutions to Exercises in Chapter 1 Section 1.2 1.1 A matrix is an orthogonal matrix if XTX = I Is the following matrix an orthogonal matrix? ⎛ −1 −1 ⎞ ⎜ ⎟ 1 1 −1 X = ⎜ ⎟ 2⎜ −1 1 ⎟ ⎜ ⎟ ⎝ 1 1 ⎠ Solution: x={{-1.,-1},{1,-1},{-1,1},{1,1}}/2; Transpose[x].x//MatrixForm yields ⎛ 1 0 ⎞ ⎜ ⎟ ⎝ 0 1 ⎠ Therefore, X is an orthogonal matrix. 1.2 If ⎛ 1 −1 ⎞ ⎛ 1 1 ⎞ A= B= ⎜ ⎟ ⎜ ⎟ ⎝ 2 −1 ⎠ ⎝ 4 −1 ⎠ does (A + B)2 = A 2 + B 2? Solution: a={{1,-1},{2,-1}}; b={{1,1},{4,-1}}; ((a+b).(a+b)-a.a-b.b)//MatrixForm yields ⎛ 0 0 ⎞ ⎜ ⎟ ⎝ 0 0 ⎠ Therefore, the expressions are equal. 2 1.3 Given the two matrices ⎛ 4 1 ⎞ ⎛ 1 4 −3 ⎞ ⎜ ⎟ A= and B= 2 6 ⎝⎜ 2 5 4 ⎠⎟ ⎜ ⎟ ⎜ 0 3 ⎟ ⎝ ⎠ Find the matrix products AB and BA. Solution: ⎛ 4 1 ⎞ ⎛ 1 4 −3 ⎞⎜ ⎟ ⎛ 12 16 ⎞ AB= 2 6 = ⎝⎜ 2 5 4 ⎠⎟⎜ ⎟ ⎝⎜ 18 44 ⎠⎟ ⎜ 0 3 ⎟ ⎝ ⎠ ⎛ 4 1 ⎞ ⎛ 6 21 −8 ⎞ ⎜ ⎟⎛ 1 4 −3 ⎞ ⎜ ⎟ BA= 2 6 = 14 38 18 ⎜ ⎟⎝⎜ 2 5 4 ⎠⎟ ⎜ ⎟ ⎜ 0 3 ⎟ ⎜ 6 15 12 ⎟ ⎝ ⎠ ⎝ ⎠ Aa={{1,4,-3},{2,5,4}}; Bb={{4,1},{2,6},{0,3}}; Aa.Bb//MatrixForm Bb.Aa//MatrixForm 1.4 Given the following matrices and their respective orders: A (n´m), B (p´m), and C (n´s). Show one way in which these three matrices can be multiplied. What is the order of the resulting matrix? Solution: CTABT →(n×s)T(n×m)(p×m)T →(s×n)(n×m)(m× p)→(s× p) 1.5 Given ⎛ ab b2 ⎞ A=⎜ ⎟ ⎝ −a2 −ab ⎠ Determine A2. Solution: From Eq. (1.13) 3 ⎛ a a ⎞⎛ a a ⎞ ⎛ a2 +a a a (a +a ) ⎞ AA=⎜ 11 12 ⎟⎜ 11 12 ⎟ =⎜ 11 12 21 12 11 22 ⎟ ⎝ a21 a22 ⎠⎝ a21 a22 ⎠ ⎝⎜ a21(a11+a22) a21a12 +a222 ⎠⎟ ⎛ a2b2 −a2b2 b2(ab−ab) ⎞ =⎜ ⎟ =0 ⎜ −a2(ab−ab) −a2b2 +a2b2 ⎟ ⎝ ⎠ Aa={{a b, b^2},{-a^2,-a b}}; Aa.Aa//MatrixForm 1.6 Given the matrix ⎛ −4 −3 −1 ⎞ A=⎜ 2 1 1 ⎟ ⎜ ⎟ ⎝ 4 −2 4 ⎠ Determine the value of 4I - 4A - A2 + A3. Solution: ⎛ 6 11 −3 ⎞ A2 =⎜ −2 −7 3 ⎟ ⎜ ⎟ ⎜ −4 −22 10 ⎟ ⎝ ⎠ ⎛ −14 −1 −7 ⎞ A3 =⎜ 6 −7 7 ⎟ ⎜ ⎟ ⎜ 12 −30 22 ⎟ ⎝ ⎠ Then, ⎛ 1 0 0 ⎞ ⎛ −4 −3 −1 ⎞ 4I −4A− A2 + A3 = 4⎜ 0 1 0 ⎟ −4⎜ 2 1 1 ⎟ ⎜ ⎟ ⎜ ⎟ ⎝⎜ 0 0 1 ⎠⎟ ⎝ 4 −2 4 ⎠ ⎛ 6 11 −3 ⎞ ⎛ −14 −1 −7 ⎞ ⎜ ⎟ ⎜ ⎟ − −2 −7 3 + 6 −7 7 ⎜ ⎟ ⎜ ⎟ ⎜ −4 −22 10 ⎟ ⎜ 12 −30 22 ⎟ ⎝ ⎠ ⎝ ⎠ ⎛ 0 0 0 ⎞ ⎜ ⎟ = 0 0 0 ⎜ ⎟ ⎜ 0 0 0 ⎟ ⎝ ⎠ Mathematica verification Aa={{-4,-3,-1},{2,1,1},{4,-2,4}}; 4 A2=Aa.Aa; MatrixForm[A2] A3=A2.Aa; MatrixForm[A3] (4 IdentityMatrix[3]-4 Aa-A2+A3)//MatrixForm Section 1.3 1.7 Given the following matrices: ⎧ 1 ⎫ ⎛ 2 a ⎞ ⎛ 6 4 ⎞ x= ⎨ ⎬, A=⎜ ⎟, B=⎜ ⎟ ⎩ 2 ⎭ ⎝ 3 4 ⎠ ⎝ 7 5 ⎠ What is the value of a that satisfies the following equation? xTAx=detB Solution: { }⎛ 2 a ⎞⎧ 1 ⎫ { }⎧ 2+2a ⎫ xTAx= 1 2 ⎜ ⎟⎨ ⎬= 1 2 ⎨ ⎬ ⎝ 3 4 ⎠⎩ 2 ⎭ ⎩ 11 ⎭ =24+2a ⎛ 6 4 ⎞ detB=det =6×5−4×7=2 ⎜ ⎟ ⎝ 7 5 ⎠ Therefore, 24+2a=2 a=−11 Mathematica verification Solve[{1,2}.{{2,a},{3,4}}.{{1},{2}}==Det[{{6,4},{7,5}}],a] 1.8 Show that ⎛ a b+c 1 ⎞ det⎜ b a+c 1 ⎟ =0 ⎜ ⎟ ⎝ c a+b 1 ⎠ Solution: ⎛ a b+c 1 ⎞ a+c 1 b 1 b a+c det⎜ b a+c 1 ⎟ =a −(b+c) + ⎜ ⎟ a+b 1 c 1 c a+b ⎝ c a+b 1 ⎠ =a(c−b)−(b+c)(b−c)+b(a+b)−c(a+c) =0 5 Mathematica verification Det[{{a,b+c,1},{b,a+c,1},{c,a+b,1}}] 1.9 Expand the following determinants and reduce them to their simplest terms. a) ⎛ 1+a a a ⎞ det⎜ b 1+b b ⎟ ⎜ ⎟ ⎝ b b 1+b ⎠ Solution: ⎛ 1+a a a ⎞ det⎜ b 1+b b ⎟ =(1+a)⎡⎣(1+b)2 −b2⎤⎦−a⎡⎣b(1+b)−b2⎤⎦+a⎡⎣b2 −b(1+b)⎤⎦ ⎜ ⎟ ⎝ b b 1+b ⎠ =(1+a)[1+2b]−ab−ab =1+a+2b+2ab−2ab=1+a+2b Mathematica verification Det[{{1+a,a,a},{b,1+b,b},{b,b,1+b}}] b) ⎛ x3+1 1 1 ⎞ ⎜ ⎟ det 1 x3+1 1 ⎜ ⎟ ⎝⎜ 1 1 x3+1 ⎠⎟ Solution: ⎛ x3+1 1 1 ⎞ det⎜⎜ 1 x3+1 1 ⎟⎟ =(x3+1)⎡⎣(x3+1)2 −1⎤⎦−⎡⎣x3+1−1⎤⎦+⎡⎣1−x3−1⎤⎦ ⎝⎜ 1 1 x3+1 ⎠⎟ =(x3+1)⎡(x3+1)2 −1⎤−2x3 ⎣ ⎦ =(x3+1)⎡x6 +2x3⎤−2x3 ⎣ ⎦ = x3(x6 +2x3)+x6 +2x3−2x3 = x9 +2x6 +x6 = x6(x3+3) Mathematica verification 6 Det[{{x^3+1,1,1},{1,1+x^3,1},{1,1,1+x^3}}] 1.10 Determine if the following determinant a function of a ⎛ ex sinx cosx ⎞ ⎜ ⎟ det ex cosx sinx ⎜ ⎟ ⎜ ⎟ ⎝ 1 1−a a ⎠ a function of a? Solution: ⎛ ex sinx cosx ⎞ det⎜⎜ ex cosx sinx ⎟⎟ =det⎛⎝⎜ c1o−sax sianx ⎞⎠⎟ex −det⎛⎝⎜ e1x sianx ⎞⎠⎟sinx ⎜ ⎟ ⎝ 1 1−a a ⎠ ⎛ ex cosx ⎞ +det cosx ⎜ ⎟ ⎝ 1 1−a ⎠ =ex(acosx−(1−a)sinx)−sinx(aex −sinx) +cosx(ex(1−a)−cosx) =ex(acosx−sinx+asinx−asinx+cosx−acosx) +sin2x−cos2x =ex(cosx−sinx)+sin2x−cos2x which is not a function of a. Mathematica verification Det[{{Exp[x],Sin[x],Cos[x]},{Exp[x],Cos[x],Sin[x]},{1,1-a,a}}] 1.11 Show that ⎛ ⎞ ⎜ x2 x 1 ⎟ ⎜⎜ 1 1 ⎟⎟⎟ det⎜⎜ x2 x 1 ⎟⎟=(x −x )(x −x )(x −x ) ⎝⎜⎜⎜⎜⎜ x322 x23 1 ⎠⎟⎟⎟⎟⎟⎟ 1 2 1 3 2 3 Solution: 7 ⎛ ⎞ ⎜ x2 x 1 ⎟ ⎜⎜ 1 1 ⎟⎟⎟ det⎜⎜ x2 x 1 ⎟⎟=x2(x −x )−x (x2−x2)+(x2x −x2x ) ⎜⎜ 2 2 ⎟⎟ 1 2 3 1 2 3 2 3 3 2 ⎝⎜⎜⎜ x32 x3 1 ⎠⎟⎟⎟⎟ =x2(x −x )−x (x −x )(x +x )+x x (x −x ) 1 2 3 1 2 3 2 3 2 3 2 3 =(x −x )⎡x2−x (x +x )+x x ⎤ 2 3 ⎣⎢ 1 1 2 3 2 3⎦⎥ =(x −x )⎡x (x −x )−x (x −x )⎤ 2 3 ⎣⎢ 1 1 2 3 1 2 ⎦⎥ =(x −x )(x −x )(x −x ) 1 2 1 3 2 3 Mathematica verification Simplify[Det[{{x1^2,x1,1},{x2^2,x2,1},{x3^2,x3,1}}]] Section 1.4 1.12 Given ⎛ 17 7 ⎞ A= ⎜ ⎟ ⎝ 19 9 ⎠ Determine A-1 and verify your result. Solution: From Eq. (1.27) −1 ⎛ a a ⎞ 1 ⎛ a −a ⎞ ⎜ 11 12 ⎟ = ⎜ 22 12 ⎟ ⎜ a a ⎟ a a −a a ⎜ −a a ⎟ ⎝ 21 22 ⎠ 11 22 12 21⎝ 21 11 ⎠ −1 ⎛ 17 7 ⎞ 1 ⎛ 9 −7 ⎞ = ⎜ ⎟ ⎜ ⎟ ⎝ 19 9 ⎠ 17×9−19×7⎝ −19 17 ⎠ ⎛ 9/20 −7/20 ⎞ = ⎜ ⎟ ⎝ −19/20 17/20 ⎠ Since, from Eq. (1.13) ⎛ a a ⎞⎛ b b ⎞ ⎛ a b +a b a b +a b ⎞ ⎜ 11 12 ⎟⎜ 11 12 ⎟ =⎜ 11 11 12 21 11 12 12 22 ⎟ a a b b a b +a b a b +a b ⎝ 21 22 ⎠⎝ 21 22 ⎠ ⎝ 21 11 22 21 21 12 22 22 ⎠ then 8 ⎛ 17 7 ⎞⎛ 9/20 −7/20 ⎞ ⎛ 17×9/20−7×19/20 −17×7/20+7×17/20 ⎞ = ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ 19 9 ⎠⎝ −19/20 17/20 ⎠ ⎝ 19×9/20−9×19/20 −19×7/20+9×17/20 ⎠ ⎛ 1 0 ⎞ = ⎜ ⎟ ⎝ 0 1 ⎠ Mathematica verification Aa={{17,7},{19,9}}; Inverse[Aa]//MatrixForm Inverse[Aa].Aa//MatrixForm Section 1.5 1.13 Given the two matrices ⎛ 3 1 4 ⎞ ⎛ 2 1 3 ⎞ ⎜ ⎟ ⎜ ⎟ A= 2 1 2 and B= 1 2 5 ⎜ ⎟ ⎜ ⎟ ⎜ 4 2 3 ⎟ ⎜ 0 2 1 ⎟ ⎝ ⎠ ⎝ ⎠ Show that (AB)T = BTAT. Solution: T T ⎛⎛ 3 1 4 ⎞⎛ 2 1 3 ⎞⎞ ⎛ 7 13 18 ⎞ (AB)T =⎜⎜ 2 1 2 ⎟⎜ 1 2 5 ⎟⎟ =⎜ 5 8 13 ⎟ ⎜⎜ ⎟⎜ ⎟⎟ ⎜ ⎟ ⎜⎜ 4 2 3 ⎟⎜ 0 2 1 ⎟⎟ ⎜ 10 14 25 ⎟ ⎝⎝ ⎠⎝ ⎠⎠ ⎝ ⎠ ⎛ 7 5 10 ⎞ ⎜ ⎟ = 13 8 14 ⎜ ⎟ ⎜ 18 13 25 ⎟ ⎝ ⎠ and T T ⎛ 2 1 3 ⎞ ⎛ 3 1 4 ⎞ ⎛ 2 1 0 ⎞⎛ 3 2 4 ⎞ BTAT =⎜ 1 2 5 ⎟ ⎜ 2 1 2 ⎟ =⎜ 1 2 2 ⎟⎜ 1 1 2 ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ 0 2 1 ⎟ ⎜ 4 2 3 ⎟ ⎜ 3 5 1 ⎟⎜ 4 2 3 ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎛ 7 5 10 ⎞ ⎜ ⎟ = 13 8 14 ⎜ ⎟ ⎜ 18 13 25 ⎟ ⎝ ⎠ Mathematica verification 9 Aa={{3,1,4},{2,1,2},{4,2,3}}; Bb={{2,1,3},{1,2,5},{0,2,1}}; Aa.Bb//MatrixForm Transpose[Aa.Bb]//MatrixForm Transpose[Bb]//MatrixForm Transpose[Aa]//MatrixForm Transpose[Bb].Transpose[Aa]//MatrixForm Section 1.7 1.14 Does the following system of equations have a solution? 100y +420y +486y =17 1 2 3 400y +1050y +972y =18 1 2 3 700y +1680y +1458y =−3 1 2 3 Solution: It is seen from Eq. (1.30) that a = 300, b = 630, c = 486, and k = 2. Therefore, the determinant equals zero. Mathematica verification Det[{{100,420,486},{400,1050,972},{700,1680,1458}}] 1.15 Without solving, determine whether the following system of equations has a solution. a +2a +3a =1 1 2 3 4a +5a +6a =0 1 2 3 7a +8a +9a =−7 1 2 3 Solution: It is seen from Eq. (1.28) that c = 3 and d = 6. Therefore, the determinant equals zero. Mathematica verification Det[{{1,2,3},{4,5,6},{7,8,9}}] 1.16 Given the following system of equations é7 2ùìx ü é1 0ùìx ü ì0ü ê úí 1ý-=lê úí 1ý í ý 5 1 x 0 1 x 0 ë ûî þ ë ûî þ î þ 2 2 When l = 4, what are the values of x and x ? Justify your answer. 1 2 Solution: When 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.