MATHEMATICS RESEARCH DEVELOPMENTS A E DVANCED NGINEERING M A ATHEMATICS AND NALYSIS V 1 OLUME No part of this digital document may be reproduced, stored in a retrieval system or transmitted in any form or by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in rendering legal, medical or any other professional services. M R D ATHEMATICS ESEARCH EVELOPMENTS Additional books and e-books in this series can be found on Nova’s website under the Series tab. MATHEMATICS RESEARCH DEVELOPMENTS A E DVANCED NGINEERING M A ATHEMATICS AND NALYSIS V 1 OLUME RAMI A. MAHER Copyright © 2022 by Nova Science Publishers, Inc. https://doi.org/10.52305/THXL5007 All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted in any form or by any means: electronic, electrostatic, magnetic, tape, mechanical photocopying, recording or otherwise without the written permission of the Publisher. We have partnered with Copyright Clearance Center to make it easy for you to obtain permissions to reuse content from this publication. Simply navigate to this publication’s page on Nova’s website and locate the “Get Permission” button below the title description. This button is linked directly to the title’s permission page on copyright.com. Alternatively, you can visit copyright.com and search by title, ISBN, or ISSN. For further questions about using the service on copyright.com, please contact: Copyright Clearance Center Phone: +1-(978) 750-8400 Fax: +1-(978) 750-4470 E-mail: [email protected]. NOTICE TO THE READER The Publisher has taken reasonable care in the preparation of this book, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained in this book. The Publisher shall not be liable for any special, consequential, or exemplary damages resulting, in whole or in part, from the readers’ use of, or reliance upon, this material. Any parts of this book based on government reports are so indicated and copyright is claimed for those parts to the extent applicable to compilations of such works. Independent verification should be sought for any data, advice or recommendations contained in this book. In addition, no responsibility is assumed by the Publisher for any injury and/or damage to persons or property arising from any methods, products, instructions, ideas or otherwise contained in this publication. This publication is designed to provide accurate and authoritative information with regard to the subject matter covered herein. It is sold with the clear understanding that the Publisher is not engaged in rendering legal or any other professional services. If legal or any other expert assistance is required, the services of a competent person should be sought. FROM A DECLARATION OF PARTICIPANTS JOINTLY ADOPTED BY A COMMITTEE OF THE AMERICAN BAR ASSOCIATION AND A COMMITTEE OF PUBLISHERS. Additional color graphics may be available in the e-book version of this book. Library of Congress Cataloging-in-Publication Data ISBN: (cid:28)(cid:26)(cid:27)(cid:16)(cid:20)(cid:16)(cid:25)(cid:27)(cid:24)(cid:19)(cid:26)(cid:16)(cid:23)(cid:22)(cid:24)(cid:16)(cid:26)(cid:3)(cid:11)(cid:72)(cid:16)(cid:69)(cid:82)(cid:82)(cid:78)(cid:12) Published by Nova Science Publishers, Inc. † New York To the memory of my parents Contents Preface ..…………………………………...…………………………………………………….…..xi Acknowledgments ………………..…………………………………………………………….xiii Chapter 1 Linear Algebra and Matrices 1 1.1. Introduction ................................................................................. 1 1.2. Motivation ................................................................................... 2 1.3. Basics and Definitions of Matrices ............................................. 5 1.4. Computation by Elementary Operations .................................. 17 1.5. The Solution of Linear Algebraic Systems ............................... 23 1.6. Basics of Linear Algebra .......................................................... 37 1.7. Linear Transformations ............................................................ 43 1.8. Eigenvalue and Eigenvector Problems .................................... 49 1.9. Cayley-Hamilton Theorem and Minimum Polynomial of a Matrix ........................................................................................ 57 1.10. Symmetric and Orthogonal Matrices ...................................... 65 1.11. Singular Values, Singular Vectors, and Norms of Matrices ....................................................................................... 71 1.12. Matrix Factorizations .............................................................. 83 Exercises ......................................................................................... 89 Chapter 2 Differential Equations – Part I 101 2.1. Introduction ............................................................................. 101 2.2. Classification of Differential Equations ................................... 102 2.3. Ordinary Differential Equations in Engineering Problems...... 105 2.4. Solution Concepts .................................................................. 112 2.5. First-Order Ordinary Differential Equations ............................ 115 2.6. Second-Order Ordinary Differential Equations ...................... 129 2.7. High-Order Ordinary Differential Equations ........................... 140 2.8. The Solution of a First-Order System of Differential Equations .................................................................... 143 Exercises ....................................................................................... 152 viii Contents Chapter 3 Differential Equations – Part II 159 3.1. Introduction ............................................................................. 159 3.2. Second-Order Variable-Coefficients Ordinary Differential Equations ....................................................................................... 159 3.3. Special Second-Order Ordinary Differential Equations ......... 177 3.4. Nonlinear Second-Order Differential Equations ..................... 193 3.5. Method of a Parameter ........................................................... 204 3.6. Solution Method Based on Jacobi Elliptic Functions ............. 209 Exercises ....................................................................................... 215 Chapter 4 Laplace Transforms 221 4.1. Introduction ............................................................................. 221 4.2. Definitions and Theorems ...................................................... 222 4.3. Laplace Inverse ...................................................................... 229 4.4. The Solution of Differential Equations Using Laplace Transformation............................................................................... 233 4.5. Laplace Transform of Especial Functions .............................. 244 4.6. Convolution Theorem ............................................................. 252 4.7. Advanced Applications ........................................................... 261 Exercises ....................................................................................... 267 Chapter 5 Numerical Methods 277 5.1. Introduction ............................................................................. 277 5.2. Definitions and Concepts ....................................................... 278 5.3. The Solution of Nonlinear Algebraic Equations ..................... 280 5.4. Polynomial Approximation and Interpolation .......................... 296 5.5. Numerical Differentiation ........................................................ 311 5.6. Numerical Integration ............................................................. 316 5.7. Numerical Methods for Solving Ordinary Differential Equations ....................................................................................... 326 5.8. Numerical Solution of Boundary Value Problem .................... 338 Exercises ....................................................................................... 347 Answers to Selected Exercises 357 Sections 1.1–1.5 ............................................................................ 357 Sections 1.6–1.7 ............................................................................ 358 Sections 1.8–1.9 ............................................................................ 358 Section 1.10–1.12 .......................................................................... 359 Section 2.1–2.4 .............................................................................. 360 Section 2.5 ..................................................................................... 360 Section 2.6 ..................................................................................... 361 Sections 2.7–2.8 ............................................................................ 361 Section 3.2 ..................................................................................... 361 Section 3.3 ..................................................................................... 362 Section 4.2 ..................................................................................... 364 Section 4.3–4.4 .............................................................................. 364 Section 5.3 ..................................................................................... 366