Table Of Contentladditional
ATHEMATICS
i ole
——. A’P!P'L'I'E’D
dF TALBERT
HH HENG
Preface
ths sat een of Adtonal Matheney Pate and Appi, te text hes Te
earned Ieee all th Work in Pave Vematics and Partly Mecha ino
Cumtrdge Adinsl Malhoaie ols
‘Th hoo is divide ino thes pa.
‘Part 7 deals wit he tle Pots Mathematics syllabus, cowering sees opis
for PaperL
Pvt cota mati fr tho fare Pue Mathers te in Papa 2
are TH deals yi Prile Machanies whic i oor upon in Pager 2
“These asc of Revision Papers arene prt ft Dok.
Entre of hs ein nelade
+more exarple iss the workin geaer. dei
1 hw quotons armed i dart inereaingdifBvly fr oxeasve pie
1 reviion exereize a th ond of cach shaper whieh includes questions Iran ose
Camibeae paper ome more difnltor ls trectqpestons ar giveniaget Bul
ovision Beers o lle ae acme the ove sess,
Asin yovion tons, de teskmentiastightrward alow apldprgpessingroning
‘we esimigues, wil felntexcreisos for pace. The pies ave bee een age
Tso fe Unb fr enewenione, Bots ould be alted i ee
‘We arc grat te sve of Landon ad he Carbide Local Borsnton Bi
fbx potion to eprosicequsstions Som her pst examizuion cape.
Content
PARTI PURE MATHEMATICS
1 Coordinate Geometry 1
visa Casati
jain of Tan Ps,
Dintnce bein Tove Points
‘arse af ReatioerFigucs(Opsooa)
‘Graton ar Slope of Saag Line — angle of slope
Parle Lins
Colne Points
expo Lines
Bqunion ofa Sight Line — ns paral te as x er nas
GGruenr-inecope Fora — eqovions of pale sad pxpendcue Eas
Introctnn Lines,
Bovinion Exercise |
2 Simultaneous Equal 3
[Revnon Exorise%
3 Funetlons 0
Reluns und Pstons
‘Daman od Range
‘Gaupical Roprecortation cf Fastnos — comian rations a their
supe; guphs of Caran Luetions
‘The Modis fa Funston Txt
dale Casgulies
Tae Ineo oa Fein — tomes th eos, spi!
‘leecaen ofan ave fev sompesie Lotion?
sunairy
4 The Quadratle Function ”
Selving Onueaic Cations
Graph ofthe Quadnutis Funston 199 ~ ae 134 ©
‘Typts oF Rowe of 07? 4 x te ~O
avn anf Minioum Values uu Quataic Function
Shasbing the Grp: of u Quad Funston
uns of « Quuaus Fonction
uadrwis Incas
Sumoery
evan Bacio 4
Binomial Expansions
the Sinan tee
Siang
Revision Exerelee 5
Radians, Arcs and Sectors
Rei Messe
Tange fou Ams
Anmvota Sectoral a Ci
Sumer
Revi reese
Trigonometry
"ignnometsicHonation Jar a Geaeeal Anglo —
ote on special angles 34860"
Depatve Angles
Jase rigonemtec Eyton
Otter Hizonementc Fusctons
(Graph of Lrgeacmetic Foecions — sin and ena 8: tan8
Muli Angle Puncions
Midnlnsef Tigoaomete Fuk
Wewikies
patios wit mone Hea One Hanon
Summiny
‘Revision Exmrise7
Vectors
Seals a Vectors
Regresuttion of Ve
Raualiy uf Vectors
Notaon for Vectors
Mailing ofa Vocus — very veser solar ef woot
Aaah a Rotors
Diagoale of «Paraeloerara
raion Vastns
Gunponcus a Vector: Uhik Canine Veo, anitvsctrs
Seala Padact of Toe Vessrs
Sonar
Revision Ferenc 8
Calculus (1): Difterenti
Sidincofa Cave
Sena Mae oe Gade Fon
‘eran —the natok: ain of
ion
”
m
be
ans
0
"
Note oa tadices
The Deere far
he Dera of Pela
Cm Fats
‘he Sent Diller Coetiser 22
Shorey “
Caicutus (2): Applications of Differentiation
Incscasing wm Dering Funetions
‘Toagenis nd Normals
Stationary Prine Maxie sed Minin —quadatio funtion
‘Mrinal Winn Prem
Yohuity al Acelertun
Smal Taeemenss Apprmate Changes — conmnctd asso sage
Sunnie
Revision Faerie U0
Calculus (3): Integration
Antti
‘he Atay Coin: ndefirite ltr — notte inkl
‘Applenion a ikgeatun —snenuader ure
TetiitoTorgrals Liber aos arin
Said of Retluten «robo evolina cca y gin boven
Sonar
Revision tri 17
Revision Papers 1-5
PART FURTHER PURE MATHEMATICS.
412
13
Remainder and Factor Theorems: Cubic Equations
‘The Rensindor There
Ths Fostor Traore soba ebie urna
eat Polyooine
Surniry
Rovsion Buri (2
Arithmetic and Geometric Progressions
Aiatic Progrssions — aVwreic msan, tm of at arin
‘egress
‘Gsiyoenic Progsesions-_geomere meanu am ofa gata progescon:
sim to nfaty oF pooncic progression
sonny
me
et
eo
U6
14
18
16
7
8
Revision Baer 13
Further Trigonometry: Compound and Multiple 23
Angles: 3 cos 6+ Bin 0
Aldon Yesmaloe
“Taxgenicut Cvpound Angles A 81
Malkipls Ares
TheFrcien sees osind
‘The guanine | Buin =e
Sniiany
Revision Exercise 14
Exponentiat and Logarithmic Functions. aso
les fr lags
Bycnenial Byron: de graph of th exponen Seaton
The nga Puan — the graph nf abe kine Fastin:
rules ar logis aesial gains cron gaits
logartes siions :
Sunny
‘Revision Lesze 13
ion to Linear Form am
Conver
Sutny
ovihon Haaren 16
Calewius (4): Further Techniques: Trigonometric agg
Functions
CCaleulue: Funle Tecboigqees — ractioal nies: eeyadon of goers
‘of he Tne Foti 1 ifsentiton of dh prea fe
funeins tfaiation ofthe quot of tH ution:
Aiffexcnavn of pli Fuacdane ikon of cates rstheds
TigasectisBunctens = iferatiion on «ne ewtanin
‘ifeccaion of eos Measaition of ran teurton a
lgcnamettis feta
Sunny,
‘Revision Exercge 1?
Caloulus (5): e* and in x ~
diva
Ame
Ieyrtionet
Sumursry
Revision Rese 16
19. Parametric Equations
Sunmasy
evinon Pore 19
Revislan Papers 6 - 10
PART IIl_ PARTICLE MECHANICS
20. Kinematics
2 Geaph
22 Graphs — aca wut 7 gah
Suuighr Line Motion with Conitaat Arcelemtion
‘Verte Mation under Grivkg
Sammy
ost Hacrise 29
21 Velocity and Relative Velocity
CCompasiion of Velocities —rogoluon of velostes
Reve Velociny
Surscary
Revvion Exerip 21
22 Projectiles
Pac
elocty Camponess- covets: rest eight; ac of lige
‘orca ngs
Summary
Revision Exersioa 22
23 Force, Friction
Forces — uni roe
‘Types of Force — ght reasons son rein; tat
Compesin vf 2 Fores
‘Reselution of «Force
‘Goplena Frees Acting on Patcle
Esguiibsium ofa Panicle
‘Toangle of Fores
Lam's Theorem
Polygon of Feces
fection
a
a
40,
464
2
Summary
nso 8
24 Newion's Laws of Mation
ewig’ ase
‘Mas and Weng
hnnceial Parcs
Sancy
Revision Rrersoe 94
25 Work, Energy, Power
work
Kinetic Frengy (KD)
Pout Duane (PL)
Paver
Surry
Resiion Unersine 25,
26 Momentum and Imputse
Cocnervton of Moments
Sunnony
Resvishow Faeroe 76
Revision Papers 11 - 18
Answers
aM
sa
sm
300
606
Pure Mathemati