ebook img

Actuarial and Financial Risks: Models, Statistical Inference, and Case Studies PDF

298 Pages·2010·14.39 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Actuarial and Financial Risks: Models, Statistical Inference, and Case Studies

Journal of Probability and Statistics Actuarial and Financial Risks: Models, Statistical Inference, and Case Studies Guest Editors: Ričardas Zitikis, Edward Furman, Abdelhakim Necir, Johanna Nešlehová, and Madan L. Puri Actuarial and Financial Risks: Models, Statistical Inference, and Case Studies Journal of Probability and Statistics Actuarial and Financial Risks: Models, Statistical Inference, and Case Studies Guest Editors: Ricˇardas Zitikis, Edward Furman, Abdelhakim Necir, Johanna Nesˇlehova´, and Madan L. Puri Copyrightq 2010HindawiPublishingCorporation.Allrightsreserved. Thisisanissuepublishedinvolume2010of“JournalofProbabilityandStatistics.”Allarticlesareopenaccessarticles distributedundertheCreativeCommonsAttributionLicense,whichpermitsunrestricteduse,distribution,andrepro- ductioninanymedium,providedtheoriginalworkisproperlycited. Editorial Board MohammadF.Al-Saleh,Jordan DebasisKundu,India ManLaiTang,HongKong VoV.Anh,Australia MichaelLavine,USA RobertJ.Tempelman,USA ZhidongBai,China NikolaosE.Limnios,France A.Thavaneswaran,Canada IshwarBasawa,USA ChunshengMa,USA PetervanderHeijden,TheNetherlands Shein-chungChow,USA EricMoulines,France RonglingWu,USA MurrayClayton,USA HungT.Nguyen,USA KelvinK.W.Yau,HongKong DennisDeanCox,USA MadanL.Puri,USA PhilipL.H.Yu,HongKong JunbinB.Gao,Australia Jose´ Mar´ıaSarabia,Spain DanielZelterman,USA ArjunK.Gupta,USA LawrenceA.Shepp,USA RicardasZitikis,Canada TomaszJ.Kozubowski,USA H.P.Singh,India Contents ActuarialandFinancialRisks:Models,StatisticalInference,andCaseStudies,RicˇardasZitikis, EdwardFurman,AbdelhakimNecir,JohannaNesˇlehova´,andMadanL.Puri Volume2010,ArticleID392498,3pages ForestFireRiskAssessment:AnIllustrativeExamplefromOntario,Canada,W.JohnBraun, BruceL.Jones,JonathanS.W.Lee,DouglasG.Woolford,andB.MikeWotton Volume2010,ArticleID823018,26pages TheFoundationsofProbabilitywithBlackSwans,GracielaChichilnisky Volume2010,ArticleID838240,11pages Asteroids:AssessingCatastrophicRisks,GracielaChichilniskyandPeterEisenberger Volume2010,ArticleID954750,15pages ContinuousTimePortfolioSelectionunderConditionalCapitalatRisk, GordanaDmitrasinovic-Vidovic,AliLari-Lavassani,XunLi,andAntonyWare Volume2010,ArticleID976371,26pages IndividualPropertyRiskManagement,MichaelS.Finke,EricBelasco,andSandraJ.Huston Volume2010,ArticleID805309,11pages OnSomeLayer-BasedRiskMeasureswithApplicationstoExponentialDispersionModels, OlgaFurmanandEdwardFurman Volume2010,ArticleID357321,19pages PricingEquity-IndexedAnnuitiesunderStochasticInterestRatesUsingCopulas, PatriceGaillardetz Volume2010,ArticleID726389,29pages LocalLikelihoodDensityEstimationandValue-at-Risk,ChristianGourierouxandJoannJasiak Volume2010,ArticleID754851,26pages Zenga’sNewIndexofEconomicInequality,ItsEstimation,andanAnalysisofIncomesin Italy,FrancescaGreselin,LeoPasquazzi,andRicˇardasZitikis Volume2010,ArticleID718905,26pages RiskNavigatorSRM:AnAppliedRiskManagementTool,DanaL.K.HoagandJayParsons Volume2010,ArticleID214358,17pages EstimatingL-FunctionalsforHeavy-TailedDistributionsandApplication,AbdelhakimNecir andDjamelMeraghni Volume2010,ArticleID707146,34pages POT-BasedEstimationoftheRenewalFunctionofInteroccurrenceTimesofHeavy-Tailed Risks,AbdelhakimNecir,AbdelazizRassoul,andDjamelMeraghni Volume2010,ArticleID965672,14pages EstimatingtheConditionalTailExpectationintheCaseofHeavy-TailedLosses, AbdelhakimNecir,AbdelazizRassoul,andRicˇardasZitikis Volume2010,ArticleID596839,17pages AnAnalysisoftheInfluenceofFundamentalValues’EstimationAccuracyonFinancial Markets,HiroshiTakahashi Volume2010,ArticleID543065,17pages HindawiPublishingCorporation JournalofProbabilityandStatistics Volume2010,ArticleID392498,3pages doi:10.1155/2010/392498 Editorial Actuarial and Financial Risks: Models, Statistical Inference, and Case Studies Ricˇardas Zitikis,1 Edward Furman,2 Abdelhakim Necir,3 Johanna Nesˇlehova´,4 and Madan L. Puri5,6 1DepartmentofStatisticalandActuarialSciences,UniversityofWesternOntario,London, ON,CanadaN6A3K7 2DepartmentofMathematicsandStatistics,YorkUniversity,Toronto,ON,CanadaM3J1P3 3LaboratoryofAppliedMathematics,MohamedKhiderUniversity,Biskra07000,Algeria 4DepartmentofMathematicsandStatistics,McGillUniversity,Motreal,QC,CanadaH3A2K6 5DepartmentofMathematicsandStatistics,KingFahdUniversityofPetroleumandMinerals, Dhahran31261,SaudiArabia 6DepartmentofMathematics,IndianaUniversity,Bloomington,Indiana47405,USA CorrespondenceshouldbeaddressedtoRicˇardasZitikis,[email protected] Received10June2010;Accepted10June2010 Copyrightq2010RicˇardasZitikisetal. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproductioninanymedium,providedtheoriginalworkisproperlycited. Understanding actuarial and financial risks poses major challenges. The need for reliable approachestoriskassessmentisparticularlyacuteinthepresentcontextofhighlyuncertain financial markets. New regulatory guidelines such as the Basel II Accord for banking and Solvency II for insurance are being implemented in many parts of the world. Regulators in various countries are adopting risk-based approaches to the supervision of financial institutions. Many researchers in a variety of areas have been dealing with nontrivial and highly multifaceted problems in an attempt to answer seemingly plain questions such as how to assess and quantify risks (cid:2)Crouhy, Galai, and Mark (cid:3)1(cid:4)(cid:5). The present issue of the Journal of Probability and Statistics provides a glimpse of how challenging such problems are, both philosophically and mathematically, through a collection of papers that cover a large spectrumofappliedandtheoreticalproblems. A number of ideas concerning measuring risks stem from the economic theory and in particular from the classical utility theory (cid:2)Neumann and Morgenstern (cid:3)2(cid:4)(cid:5) as well as fromtheprospecttheory(cid:2)KahnemanandTversky(cid:3)3(cid:4)(cid:5),whichweresubsequentlydeveloped into the anticipated, also known as rank-dependent or generalized expected, utility theory (cid:2)Quiggin(cid:3)4(cid:4)(cid:5),andmostrecentlyintoaground-breakingtheoryofchoiceunderuncertainty thatallowsforthepresenceofcatastrophicrisks(cid:2)Chichilnisky(cid:3)5(cid:4)(cid:5). 2 JournalofProbabilityandStatistics This special Journal of Probability and Statistics issue offers many articles based on such economic theories and their extensions. G. Chichilnisky develops foundations for dealing with catastrophic risks, called “black swans”, which require tools beyond the classicalσ-additiveprobabilitytheory.M.Finke,E.Belasco,andS.Hustonreviewhousehold propertyriskmanagementtheoryinordertocompareoptimalriskretentiontoconventional practice. Aided with ideas of behavioral economics and finance, H. Takahashi investigates theforecastaccuracyoffundamentalvaluesinfinancialmarketsandclarifiesissuessuchas price fluctuations. F. Greselin, L. Pasquazzi, and R. Zitikis develop statistical inference for Zenga’sindexofeconomicinequality,whoseconstructionbringstomindtherelativenature ofnotionssuchassmallandlarge,poorandrich. To make us aware of the scope and complexity of the problem, several authors have contributedpaperstacklingriskswithinandbeyondthefinancialsector.G.Chichilniskyand P.Eisenbergerhavewrittenafar-reachingarticleonasteroidrisks.Theyconvinceusaboutthe criticalimportanceoftheserisks,forwhichverylittleresearchhasbeencarriedout,andthey provide an interesting methodology for comparing asteroid risks with the risks of climate changetomakebetterdecisionsaboutresearchanddevelopment.Forfurtherinformationon thisandotherrelatedtopics,werefertothewebsitehttp://www.chichilnisky.com/. W. J. Braun, B. L. Jones, J. S. W. Lee, D. G. Woolford, and M. Wotton examine the riskassessmentofforestfiresinordertogenerateburnprobabilityriskmaps,concentrating on the district municipality of Muskoka in Ontario, Canada, as an illustrative example. D. L. K. Hoag and J. Parsons discuss their new program, Risk Navigator SRM, which greatly expands the number of managers that can address risks in agriculture. The program lays down solid foundations and provides state-of-the-art practical support tools, including a web site (cid:2)http://www.risknavigatorsrm.com/(cid:5), a risk management simulator (cid:2)http://www.agsurvivor.com/(cid:5),andabookthatputsitalltogether(cid:2)Hoag(cid:3)6(cid:4)(cid:5). Specific insurance risk-related problems are tackled by a number of authors. P.Gaillardetzdevelopsanelaborateevaluationapproachtoequity-linkedinsuranceproducts understochasticinterestrates.O.FurmanandE.Furmanproposelayer-basedcounterpartsof anumberofriskmeasuresandinvestigatetheirpropertiesandanalytictractability,especially withintheframeworkofexponentialdispersionmodels. One of the basic measures of risk is the so-called value-at-risk, which amounts to a high quantile from the statistical point of view. It is arguably one of the most challenging measures to estimate and to work with in practice. This risk measure was advocated by theBaselCommitteeonBankingSupervision(cid:2)http://www.bis.org/bcbs/(cid:5)andimplemented worldwide.C.Gourie´rouxandJ.Jasiaksuggestanddevelopanovelnonparametricmethod forestimatingtheconditionalvalue-at-riskandillustrateitsperformanceonreal-lifeportfolio returns. G. Dmitrasinovic-Vidovic, A. Lari-Lavassani, X. Li, and A. Ware explore the conditionalcapital-at-riskmeasureinthecontextofportfoliooptimizationandofferoptimal strategies. This special Journal of Probability and Statistics issue also includes papers that develop statistical inference for distortion risk measures and related quantities in the case of heavy-tailed distributions. A. Necir and D. Meraghni deal with the estimation of L- functionals, which are generalizations of the distortion risk measure, and which naturally ariseintheaforementionedanticipatedutilitytheory.A.Necir,A.Rassoul,andD.Meraghni developatheoryforestimatingtherenewalfunctionofinteroccurrencetimesofheavy-tailed risks. A. Necir, A. Rassoul, and R. Zitikis introduce a new estimator of the conditional tail expectation,whichisoneofthemostimportantexamplesofthedistortionriskmeasureand JournalofProbabilityandStatistics 3 demonstrate the performance of the new estimator within the framework of heavy-tailed risks. We, the editors of this special issue, most sincerely thank three groups of people, without whom this special issue would not have reached its fruition: first and foremost, the authors who have shared with us their research achievements; second, the helpful and efficient Hindawi Publishing Corporation staff; third, the professional and diligent referees whoseeffortsresultedinusefulfeedbackincorporatedintooftenseveralroundsofrevisions of the herein published papers. We are also grateful to various granting agencies (cid:2)the Actuarial Foundation, the Actuarial Education and Research Fund, the Society of Actuaries Committee on Knowledge Extension Research, and the Natural Sciences and Engineering ResearchCouncilofCanada(cid:5)fortheirsupportofourresearch. RicˇardasZitikis EdwardFurman AbdelhakimNecir JohannaNesˇlehova´ MadanL.Puri References (cid:3)1(cid:4) M.Crouhy,D.Galai,andR.Mark,TheEssentialsofRiskManagement,McGraw-Hill,NY,USA,2006. (cid:3)2(cid:4) J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior, Princeton University Press,Princeton,NJ,USA,1944. (cid:3)3(cid:4) D.KahnemanandA.Tversky,“Prospecttheory:ananalysisofdecisionunderrisk,”Econometrica,vol. 47,pp.263–291,1979. (cid:3)4(cid:4) J.Quiggin,GeneralizedExpectedUtilityTheory,KluwerAcademic,Dodrecht,TheNetherlands,1993. (cid:3)5(cid:4) G.Chichilnisky,“Anaxiomaticapproachtochoiceunderuncertaintywithcatastrophicrisks,”Resource andEnergyEconomics,vol.22,no.3,pp.221–231,2000. (cid:3)6(cid:4) D.L.Hoag,AppliedRiskManagementinAgriculture,CRCPress,BocaRaton,Fla,USA,2009.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.