ebook img

Accuracy of Mathematical Models: Dimension Reduction, Homogenization, and Simplification PDF

335 Pages·2020·4.436 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Accuracy of Mathematical Models: Dimension Reduction, Homogenization, and Simplification

Tracts in Mathematics 33 SS Tracts in Mathematics 33 te er fg a e n y A I . . R S ae up tin e r Sergey I. Repin Sergey I. Repin Stefan A. Sauter Stefan A. Sauter Accuracy of Mathematical Models The expansion of scientific knowledge and the development of technology A Accuracy of are strongly connected with quantitative analysis of mathematical mo dels. c Accuracy and reliability are the key properties we wish to understand and c u control. r Mathematical Models a This book presents a unified approach to the analysis of accuracy of c deterministic mathematical models described by variational problems and y partial differential equations of elliptic type. It is based on new mathematical o methods developed to estimate the distance between a solution of a f Dimension Reduction, boundary value problem and any function in the admissible functiona l class M associated with the problem in question. The theory is presented fo r a wide class of elliptic variational problems. It is applied to the investigation a Homogenization, and Simplification of modelling errors arising in dimension reduction, homogenization, t h simplification, and various conversion methods (penalization, linearization, e regularization, etc.). A collection of examples illustrates the performance of m error estimates. a t i c a l M o d e l s ISBN 978-3-03719-206-1 https://ems.press Repin_Sauter Cover | Font: Nuri_Helvetica Neue | Farben: Pantone 116, Pantone 287 | RB 32 (?) mm EMS Tracts in Mathematics 33 EMS Tracts in Mathematics Editorial Board: Michael Farber (Queen Mary University of London, Great Britain) Michael Röckner (Universität Bielefeld, Germany, and Purdue University, USA) Vladimir Turaev (Indiana University, Bloomington, USA) Alexander Varchenko (The University of North Carolina at Chapel Hill, USA) This series includes advanced texts and monographs covering all fields in pure and applied mathematics. The Tracts will give a reliable introduction and reference to special fields of current research. The books in the series will in most cases be authored monographs, although edited volumes may be published if appropriate. They are addressed to graduate students seeking access to research topics as well as to the experts in the field working at the frontier of research. For a complete listing see https://ems.press. 14 Steffen Börm, Efficient Numerical Methods for Non-local Operators. 2-Matrix Compression, Algorithms and Analysis 15 Ronald Brown, Philip J. Higgins and Rafael Sivera, Nonabelian Algebraic Topology. Filtered Spaces, Crossed Complexes, Cubical Homotopy Groupoids 16 Marek Janicki and Peter Pflug, Separately Analytical Functions 17 Anders Björn and Jana Björn, Nonlinear Potential Theory on Metric Spaces 18 Erich Novak and Henryk Woz´niakowski, Tractability of Multivariate Problems. Volume III: Standard Information for Operators 19 Bogdan Bojarski, Vladimir Gutlyanskii, Olli Martio and Vladimir Ryazanov, Infinitesimal Geometry of Quasiconformal and Bi-Lipschitz Mappings in the Plane 20 Hans Triebel, Local Function Spaces, Heat and Navier–Stokes Equations 21 Kaspar Nipp and Daniel Stoffer, Invariant Manifolds in Discrete and Continuous Dynamical Systems 22 Patrick Dehornoy with François Digne, Eddy Godelle, Daan Kramer and Jean Michel, Foundations of Garside Theory 23 Augusto C. Ponce, Elliptic PDEs, Measures and Capacities. From the Poisson Equation to Nonlinear Thomas–Fermi Problems 24 Hans Triebel, Hybrid Function Spaces, Heat and Navier–Stokes Equations 25 Yves Cornulier and Pierre de la Harpe, Metric Geometry of Locally Compact Groups 26 Vincent Guedj and Ahmed Zeriahi, Degenerate Complex Monge–Ampère Equations 27 Nicolas Raymond, Bound States of the Magnetic Schrödinger Operator 28 Antoine Henrot and Michel Pierre, Shape Variation and Optimization. A Geometrical Analysis 29 Alexander Kosyak, Regular, Quasi-regular and Induced Representations of Infinite- dimensional Groups 30 Vladimir G. Maz’ya, Boundary Behavior of Solutions to Elliptic Equations in General Domains 31 Igor V. Gel‘man and Vladimir G. Maz’ya, Estimates for Differential Operators in Half-space 32 Shigeyuki Kondo–, K3 Surfaces Sergey I. Repin Stefan A. Sauter Accuracy of Mathematical Models Dimension Reduction, Homogenization, and Simplification Authors: Sergey I. Repin Stefan A. Sauter Steklov Institute of Mathematics Institut für Mathematik Russian Acadademy of Sciences Universität Zürich Fontanka, 27 Winterthurerstr. 190 191023 St. Petersburg 8057 Zürich Russia Switzerland [email protected] [email protected] 2010 Mathematical Subject Classification (primary; secondary): 35-02; 35J20, 35J50, 35J60, 35J88, 49M29, 65N15, 65N85, 74K20 Key words: Modelling error, a posteriori error majorant, model simplification, dimension reduction, homogenization, conversion of models ISBN 978-3-03719-206-1 The Swiss National Library lists this publication in The Swiss Book, the Swiss national bibliography, and the detailed bibliographic data are available on the Internet at http://www.helveticat.ch. This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broad- casting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of the copyright owner must be obtained. © 2020 European Mathematical Society Contact address: European Mathematical Society – EMS – Publishing House Institut für Mathematik Technische Universität Berlin Straße des 17. Juni 136 10623 Berlin Germany [email protected] https://ems.press Typeset using the authors’ TEX files: le-tex publishing services GmbH, Leipzig, Germany Printing and binding: Beltz Bad Langensalza GmbH, Bad Langensalza, Germany ∞ Printed on acid-free paper 9 8 7 6 5 4 3 2 1 To our parents Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Basicnotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Domainsandoperators . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Spacesoffunctions . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.3 Convexfunctionals . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Functionalinequalities . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.1 Ho¨ldertypeinequalities . . . . . . . . . . . . . . . . . . . . 7 1.2.2 FriedrichsandPoincare´ inequalities . . . . . . . . . . . . . . 7 1.2.3 Inequalitiesforfunctionswithzeromeantraces ontheboundary . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2.4 Korn’sinequalities . . . . . . . . . . . . . . . . . . . . . . . 11 1.2.5 Inf–Supcondition . . . . . . . . . . . . . . . . . . . . . . . 12 1.3 Computableboundsofconstants infunctionalinequalities . . . . . . . . . . . . . . . . . . . . . . . . 15 1.3.1 ConstantintheFriedrichsinequality . . . . . . . . . . . . . . 16 1.3.2 ConstantsinPoincare´-typeinequalities . . . . . . . . . . . . 17 1.3.3 Constantsintrace-typeinequalities. . . . . . . . . . . . . . . 20 1.3.4 Estimatesofconstantsbasedondomaindecomposition . . . . 20 2 Distancetoexactsolutions. . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.1 Aclassofboundaryvalueproblems . . . . . . . . . . . . . . . . . . 25 2.2 Themainerroridentity . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2.1 Errormeasure . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2.2 Decompositionoftheerrormeasure . . . . . . . . . . . . . . 31 2.2.3 ProblemswithlinearF . . . . . . . . . . . . . . . . . . . . . 33 2.2.4 Erroridentitiesinvectorform . . . . . . . . . . . . . . . . . 42 2.2.5 Differencebetweentheexactsolutionsoftwoproblems. . . . 43 2.3 Linearproblems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.3.1 Errorrelationsinthegeneralform . . . . . . . . . . . . . . . 44 2.3.2 Specialcase . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.3.3 Primal-dualnormsoferrorsinV (cid:2)Y(cid:2) . . . . . . . . . . . . 50 2.3.4 Errorsinthefullprimal-dualnorm . . . . . . . . . . . . . . . 52 2.3.5 Majorantasasourceofnewmodels . . . . . . . . . . . . . . 54 2.3.6 Non-homogeneousboundaryconditions . . . . . . . . . . . . 55 2.4 Applicationstoparticularmathematicalmodels. . . . . . . . . . . . 57 2.4.1 Diffusiontypemodels . . . . . . . . . . . . . . . . . . . . . 57 2.4.2 Mixedboundaryconditions . . . . . . . . . . . . . . . . . . . 59 2.4.3 Problemswithperiodicboundaryconditions . . . . . . . . . . 60 2.4.4 Advancedestimatesbasedondomaindecomposition . . . . . 61 viii Contents 2.4.5 Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.4.6 Variationalfunctionalswithpowergrowth . . . . . . . . . . . 70 2.4.7 Stokesproblem . . . . . . . . . . . . . . . . . . . . . . . . . 75 2.4.8 Binghamproblem . . . . . . . . . . . . . . . . . . . . . . . . 79 2.4.9 Anothererrorestimationmethod . . . . . . . . . . . . . . . . 81 2.5 Validationofmathematicalmodels. . . . . . . . . . . . . . . . . . . 86 2.6 Errorsofnumericalapproximations . . . . . . . . . . . . . . . . . . 89 2.6.1 Two-sidedestimatesofapproximationerrors . . . . . . . . . 90 2.6.2 ReductionofthesetQ(cid:2) . . . . . . . . . . . . . . . . . . . 91 ƒ(cid:2) 2.6.3 TransformationofhR.y(cid:2)/;e i . . . . . . . . . . . . . . . . . 92 h h 2.6.4 Usingextraregularityoftheexactsolution . . . . . . . . . . 93 2.6.5 Usinganauxiliaryfinite-dimensionalproblem . . . . . . . . . 94 2.6.6 Applicationstoleastsquarestypemethods. . . . . . . . . . . 99 2.6.7 Nonconformingapproximations . . . . . . . . . . . . . . . . 101 3 Dimensionreductionmodels . . . . . . . . . . . . . . . . . . . . . . . . 103 3.1 Dimensionreduction . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3.2 Second-orderellipticproblems . . . . . . . . . . . . . . . . . . . . . 107 3.2.1 Basicproblem . . . . . . . . . . . . . . . . . . . . . . . . . . 107 3.2.2 Reducedproblem . . . . . . . . . . . . . . . . . . . . . . . . 108 3.2.3 Errorgeneratedbydimensionreduction . . . . . . . . . . . . 110 3.2.4 Particularcases . . . . . . . . . . . . . . . . . . . . . . . . . 115 3.2.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 3.3 Dimensionreductioninlinearelasticity . . . . . . . . . . . . . . . . 123 3.3.1 Theplanestressproblem . . . . . . . . . . . . . . . . . . . . 123 3.3.2 Thefunction(cid:2) . . . . . . . . . . . . . . . . . . . . . . . . . 130 3.3.3 Behaviorofthemodellingerrorast!0 . . . . . . . . . . . 132 3.3.4 Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 3.4 Bendingofelasticplates . . . . . . . . . . . . . . . . . . . . . . . . 136 3.4.1 Statementoftheproblem . . . . . . . . . . . . . . . . . . . . 136 3.4.2 TheKirchhoff–Loveplatemodel . . . . . . . . . . . . . . . . 137 3.4.3 Reconstructionof3Ddisplacements . . . . . . . . . . . . . . 140 3.4.4 Reconstructionof3Dstresses . . . . . . . . . . . . . . . . . 140 3.4.5 Errorestimatesforplate-typedomains . . . . . . . . . . . . . 141 3.4.6 AccuracyoftheKLplatemodel . . . . . . . . . . . . . . . . 149 3.4.7 Estimatesofthemodellingerror . . . . . . . . . . . . . . . . 150 3.4.8 Asymptoticbehaviouroftheerrormajorant . . . . . . . . . . 152 4 Modelsimplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 4.1 Modelsimplificationbasedontheconceptofenergy . . . . . . . . . 159 4.2 Simplificationofcoefficients . . . . . . . . . . . . . . . . . . . . . . 164 4.2.1 Second-orderellipticproblems . . . . . . . . . . . . . . . . . 165 4.2.2 Generalellipticproblem . . . . . . . . . . . . . . . . . . . . 168 4.2.3 UsingextraregularityofuQ . . . . . . . . . . . . . . . . . . . 170 Contents ix 4.2.4 AsymptoticrateofconvergenceoftheerrorestimatorE.vO/ intermsofthemeasureofthenon-resolvedgeometry . . . . . 172 4.3 Geometricalsimplification . . . . . . . . . . . . . . . . . . . . . . . 173 4.3.1 SimplificationoftheDirichletboundary . . . . . . . . . . . . 173 4.3.2 Generalizations . . . . . . . . . . . . . . . . . . . . . . . . . 177 4.3.3 SimplificationoftheNeumannboundary . . . . . . . . . . . 179 4.4 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 4.4.1 Problemswith“rough”coefficients . . . . . . . . . . . . . . 182 4.4.2 Modelling-discretizationadaptationstrategies . . . . . . . . . 184 4.4.3 Problemswithuncertaindata . . . . . . . . . . . . . . . . . . 185 5 Elliptichomogenization . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 5.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 5.2 Mathematicalhomogenizationviaasymptoticexpansions. . . . . . . 190 5.3 Propertiesofthehomogenizedproblem . . . . . . . . . . . . . . . . 195 5.3.1 Well-posednessofthehomogenizedequation . . . . . . . . . 196 5.3.2 Regularityestimatesforthehomogenizedequation . . . . . . 201 5.3.3 Regularityestimatesforthecellproblem. . . . . . . . . . . . 209 5.3.4 Convergenceofthefirst-orderapproximation . . . . . . . . . 213 5.4 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 5.5 Errorestimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 5.5.1 Generalcomments . . . . . . . . . . . . . . . . . . . . . . . 221 5.5.2 Estimatesofthemodellingerror . . . . . . . . . . . . . . . . 225 5.5.3 Errorofthefullydiscretefirst-orderapproximation . . . . . . 230 5.6 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 5.6.1 Regularityandembeddingconstants . . . . . . . . . . . . . . 245 5.6.2 Modeling-discretizationstrategies . . . . . . . . . . . . . . . 247 5.6.3 Multiscaleproblems . . . . . . . . . . . . . . . . . . . . . . 248 6 Conversionofmodels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 6.1 Regularizationofmodels . . . . . . . . . . . . . . . . . . . . . . . . 251 6.1.1 Addingaregularizingterm . . . . . . . . . . . . . . . . . . . 251 6.1.2 Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 6.1.3 Prox-typeregularization . . . . . . . . . . . . . . . . . . . . 259 6.2 Errorsofpenalty-typemodels . . . . . . . . . . . . . . . . . . . . . 262 6.2.1 Generalapproach . . . . . . . . . . . . . . . . . . . . . . . . 262 6.2.2 Variationalproblemsdefinedinsubspaces . . . . . . . . . . . 265 6.3 Fictitiousdomainmethods . . . . . . . . . . . . . . . . . . . . . . . 269 6.4 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 6.5 Errorsoftime-incrementalmodels . . . . . . . . . . . . . . . . . . . 278

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.