ebook img

Accretion of interplanetary dust particles by the earth PDF

130 Pages·1996·4.6 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Accretion of interplanetary dust particles by the earth

ACCRETIONOFINTERPLANETARYDUSTPARTICLESBYTHEEARTH By STEPHENJOHNKORTENKAMP ADISSERTATIONPRESENTEDTOTHEGRADUATESCHOOL OFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENT OFTHEREQUIREMENTSFORTHEDEGREEOF DOCTOROFPHILOSOPHY UNIVERSITY OFFLORIDA 1996 ToMomandDad. ACKNOWLEDGMENTS IthankmyadvisorStanDermottforhishelpoverthelastfewyearsandforinstilling inmeasenseofaweforanythingpublishedinNature. IalsothankHumbertoCampins forhissupportinthefirstyearofmystayattheUniversityofFlorida.Thanksalsogoto theothermembersofmycommittee.BoGustafson,HenryKandrupandPaulMueller. Finally,Ithankmyparentsforraisingmethewaytheydid. TABLEOFCONTENTS £age ACKNOWLEDGMENTS iii LISTOFTABLES vi LISTOFFIGURES vii ABSTRACT xix CHAPTERS 1 INTRODUCTION 1 2 DUSTINTHEZODIACALCLOUD 4 3 THEMECHANICSOFACCRETION 15 AverageSpatialDensity 15 RelativeEncounterVelocity 24 GravitationalCross-Section 25 CaptureRate 28 4 THEORIGINOFIDPS 30 InitialParentBodyPopulation 31 GenerationandEvolutionofDustParticleOrbits 32 CaptureRates 36 ContributiontotheIDPs 37 5 VARIATIONSINTHERATEOFACCRETION 62 InitialConditions 63 GenerationandEvolutionofDustParticleOrbits 64 VariableCaptureRates 68 ComparisonWithOtherRecords 73 6 SUMMARY 95 ConclusionsandDiscussion 95 FutureWork-TheRoleofResonance 97 IV BIBLIOGRAPHY 104 BIOGRAPHICALSKETCH 108 V LIST OFTABLES Table page 4- 52--1: Theareaofdustcontributedfromeachfamilyisthesameinboththe 2.°5andthe3.°5models. However,inthe3.5°modelmaterialis distributedbetweentheasteroidbeltandtheSunwhereasinthe2.°5 modelthematerialisconfinedtotheasteroidbelt 14 1: Normalizedaveragecapturerates 39 1: Properelementsanddispersionsfor1microndiameterparticlesat lAU 67 5-2: Properelementsanddispersionsfor10microndiameterparticlesat lAU 68 VI LIST OFFIGURES Figure page 2-1: IRASobservationofthezodiacalcloudinthe25/iminfraredwaveband (soliduppercurve). Thisobservationwasmadeat90°solarelongation angle(theanglebetweenthetelescopepointingdirectionandthe Earth-Sunline)inthedirectionleadingtheEarthinitsorbitwhenthe planetwasataneclipticlongitudeof293°. Thedustbandscanbeseen asprojecting“shoulders”near±10°and0°latitude. Thestructure around60°latitudeisduetodustintheplaneoftheGalaxy. By applyingaFourierfiltertotheIRASobservationasmoothbackground profile(underlyingdashedcurve)isseparatedfromahighfrequency dustbandprofile(solidlowercurve). Thisfilteredhighfrequencydust bandprofileismerelyaresidualrepresentingthe“tipoftheiceberg”in termsofthedustbandmaterialinthezodiacalcloud 10 2-2: FilteredIRASdustbandprofiles(solidlines)foreightdifferent longitudesoftheEarth(A©). Allprofilesweremadeat90°solar elongationangleinthedirectionleadingtheEarthinitsorbit. Model dustbandswereconstructedusingparticlesfromtheThemisand Koronisfamiliesforthecentralband-pairandtheEosfamilyforthe10° band-pair. Adispersionof2.°5wasimposedontheproperinclination oftheEosmaterialinthismodel. Allofthematerialinthismodelwas confinedtotheasteroidbelt. Eightsimulatedprofiles(dashedlines) whichmimictheIRAS25//minfraredwavebandweremadethrough thesemodeldustbandsatthesamelongitudesandelongationangleas theIRASprofiles. Thesesimulatedprofileswerefilteredinafashion identicaltothatusedtogeneratetheIRASprofiles. Dashedvertical linesareplacedat±10°forreference. Allprofileshaveanamplitudeof around2MJy/Srbutarestaggeredinthefigureforconvenience 11 2-3: SameasinFigure2-2exceptthesefilteredmodeldustbandprofiles (dashedlines)areforthe3.°5modelinwhichtheEosmaterialis distributedfromtheasteroidbelttotheSun 12 VII 2- 4: UnfilteredIRASobservationshowninFigure2-1. Thelowerand middlecurvesaresimulatedunfilteredprofilesmimickingtheIRAS 25/fminfraredwavebandtakenthroughtwodifferentdustbandmodels. Eachofthesedustbandmodelswasconstructedusingparticlesfrom onlythethreeasteroidfamiliesEos,ThemisandKoronis.Themodel profilelabeled2.°5usesEosparticleshavinga2.°5dispersioninproper inclinationandconfinesallparticlestotheasteroidbelt. Themodel profilelabeled3.°5isconstructedusingEosparticleswitha3.°5 3- dispersioninproperinclinationandbyallowingtheEosmaterialto stretchfromtheasteroidbelttotheinnerSolarSystem. Thedifference inthepeakintensitybetweenagivenmodelprofileandtheIRAS profileindicatesthedustbandcontributiontotheentirezodiacalcloud, listedinTable2-1 13 1; Demonstrationoftheconceptofforcedandproperorbitalelements. ... 16 3-2: Osculatingorbitalelementsfor357membersoftheThemisasteroid family 17 33--3: Radialdependenceofthespatialdensity 19 4— 3-4: Latitudedependenceofthespatialdensityandvolumeoflatitude elementofsphericalshell 22 3-5: Latitude(left)andradial(right)averagespatialdensitydistributions. Anorbitwitha=1,e=0.05andI=l.°5wasused,theSunisatthe originoffthefiguretotheleft 23 3-6: Velocityvectorrelationshipfordeterminingencountervelocity 24 7: HyperbolicdeflectionofaparticleencounteringtheEarth 26 1; Distributionofosculatinginclinationversessemi-majoraxisfor118 shortperiodJupiterfamilycomets 41 4-2: Distributionofosculatingeccentricityversessemi-majoraxisfor118 shortperiodJupiterfamilycomets. Thedashedlinemarkstheextreme limitoftheJupiter-crossingregime,usingasemi-majoraxisand eccentricityofa=5.203,e=0.062forJovianorbit. Thesegivea perihelionofq=4.88AU,whichwefurtherreducebysubtractingthe sphereofactionoftheplanet.Da~0.365AU, 42 viii 4-3; Histogramsshowingtheinclinationandeccentricitydistributionsofthe cometsplottedinFigures4—1 and4-2 43 4-4: DwiistthriabbustoilounteofmaprgonpietrudienclHina<ti1o1nv(e1r0s5e3sassetmeir-oimdasj)o.rTahxiisspfloortalilsasshtoerwonids onthesamescaleasFigure4-1 (withashiftoflAUinsemi-major axis)andshowsthattheJupiterfamilyofcometsspanthesamerange ofinclinationastheasteroidsinthemainbelt.TheasteroidfamilyEos istheclusteratapproximately3AUand10°inclination. TheKoronis andThemisfamiliesarethelowinclinationclusterstotheleftandright of3AU,respectively.NoticethattheEosandThemisfamilieshavea higherdispersioninproperinclinationthantheKoronisfamily 44 4-5: ThetopplotisahistogramofthealltheasteroidsshowninFigure4-4. ThemiddleplotshowsonlythoseasteroidsofFigure4-4thatare associatedwithfamilies.Thebottomplotisalltheremainingbackground asteroidsthatarenotassociatedwithfamilies. ThefamiliesThemisand Koronisappeartogetheratthefeatureinsideof3°properinclination, Eosisat 10°andthenextlargestfamilyMariaisat15°. Severalsmall familiesarealsovisible.Fromthisplotweseethatalargemajorityofthe lowinclinationasteroidsbelongtotheThemisandKoronisfamiliesand thatmorethanhalfoftheasteroidsat10°belongtotheEosfamily. . . 45 4-6: DasitsetrroiibdustiwointohfapbrsoolpuetreemccaegnntirticuidteyHver<ses11se(m1i0-5m3ajasotreraoxiidss)f.orThalilsplot, whichisshownonthesamescaleasFigure4-2(withashiftoflAUin semi-majoraxis),revealstheprimarydifferencebetweentheJupiter familycometarypopulationandtheasteroidalpopulation. Thecomets havemuchhighereccentricities. TheasteroidfamiliesEosandKoronis areapparentat3AU,andjustinsideof3AUrespectively. TheThemis familyisslightlymoredifficulttodiscernherethaninFigure4-4,lying between3.1and3.2AUatabout0.15inpropereccentricity 46 4-7: ThetopplotisahistogramofthealltheasteroidsshowninFigure4-6. ThemiddleplotshowsonlythoseasteroidsofFigure4-6thatare associatedwithfamilies. Thebottomplotisalltheremaining backgroundasteroidsthatarenotassociatedwithfamilies 47 4-8: Distributionofosculatinginclinationversessemi-majoraxisfor Earth-crossingorbitsofcometarydustparticles.Theobvioustrackingis duetothecontinuingevolutionofparticlesfromasinglecomet 48 IX 4-9: Distributionofosculatingeccentricityversessemi-majoraxisfor Earth-crossingorbitsofcometarydustparticles.Theobvioustrackingis duetothecontinuingevolutionofparticlesfromasinglecomet 49 4-10: Smootheddistributionofosculatinginclinationversessemi-majoraxis forEarth-crossingorbitsofcometarydustparticles. Weusethemean anddispersionoftheorbitalelementsshowninFigure4-8togenerate arandomgaussiandistributionofEarth-crossingcometaryorbits 50 4-11: Smootheddistributionofosculatingeccentricityversessemi-majoraxis forEarth-crossingorbitsofcometarydustparticles. Weusethemean anddispersionoftheorbitalelementsshowninFigure4—9togenerate arandomgaussiandistributionofEarth-crossingcometaryorbits 51 4-12: Distributionofproperinclinationversessemi-majoraxisfor Earth-crossingorbitsofnon-familyasteroidalparticles. Thisplotis shownonthesamescaleasFigure4-10andshowsthatthe Earth-crossingcometarypopulationspansthesamerangeofinclination astheEarth-crossingasteroidalpopulation 52 4-13: Distributionofpropereccentricityversessemi-majoraxisforEarth- crossingorbitsofnon-familyasteroidalparticles. Thisplot,whichis shownonthesamescaleasFigure4-11revealstheprimarydifference betweentheEarth-crossingcometarypopulationandtheEarth-crossing asteroidalpopulation. Thecometaryorbitshavemuchhigher eccentricities.Aswewillsee,thisleadstosubstantiallyhighergeocentric encountervelocitiesforcometaryparticlesthanforasteroidalparticles.. . 53 4-14: Theorbitalevolutionofawaveof10microndiameterdustparticles fromtheEosfamilyastheirorbitsdecayfromtheasteroidfamilyat 3AUintotheinnerSolarSystem. Themiddleplottrackstheevolution oftheproperinclinationanddispersioninproperinclinationofthe particlesastheirsemi-majoraxesdecayduetoP-Rdrag. The displacementfromtheoriginofthedistributionsintheuppertwoplots isduetotheforcedinclination,whichisshowninthelowerplot 54 X

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.