Above-thresholdionizationwithhighly-chargedionsinsuper-strong laserfields: I.Coulomb-correctedstrongfieldapproximation Michael Klaiber, Enderalp Yakaboylu, and Karen Z. Hatsagortsyan Max-Planck-Institut fu¨r Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany∗ (Dated:January25,2013) Aimingattheinvestigationofabove-thresholdionizationinsuper-stronglaserfieldswithhighlychargedions, wedevelopaCoulomb-correctedstrongfieldapproximation(SFA).TheinfluenceoftheCoulombpotential oftheatomiccoreontheionizedelectrondynamicsinthecontinuumistakenintoaccountviatheeikonal approximation,treatingtheCoulombpotentialperturbativelyinthephaseofthequasi-classicalwavefunction ofthecontinuumelectron. InthispapertheformalismoftheCoulomb-correctedSFAforthenonrelativistic regimeisdiscussedemployingvelocityandlengthgauge. Directionizationofahydrogen-likesystemina 3 strong linearly polarized laser field is considered. The relation of the results in the different gauges to the 1 Perelomov-Popov-Terent’evimaginary-timemethodisdiscussed. 0 2 PACSnumbers:32.80.Rm,42.65.-k n a J I. INTRODUCTION ThestandardSFAtechniquehasalsobeenmodifiedtoinclude 4 Coulombfieldeffectsoftheatomiccore. Thesimplestheuris- 2 ticapproachisthe,so-called,Coulomb-Volkovansatzinwhich Due to advances in laser technology strong near-infrared ] laser fields nowadays are available up to intensities of theVolkovwavefunctionintheSFAmatrixelementisreplaced h 1022W/cm2[1]andmuchstrongerlaserfieldsareenvisagedin byanheuristicCoulomb-Volkovwavefunction[39–49].Inthe p lattertheCoulombfieldistakenintoaccountviaanincorpora- nearfuture[2]stimulatingtheinvestigationoftherelativistic - tionoftheasymptoticphaseoftheexactCoulomb-continuum m regimeoflaser-atominteractioninultra-strongfields. Thepio- wavefunctionintothephaseoftheheuristicCoulomb-Volkov neeringexperimentinthisfieldwascarriedoutbyMooreetal. o wavefunction[50]. Consequently,thecouplingbetweenthe [3]. Theyhaveinvestigatedtheionizationbehaviorofatoms t a andionsinastronglaserfieldatanintensityof3×1018W/cm2. CoulombandlaserfieldisneglectedintheCoulomb-Volkov . ansatzandtheapproachfailswhentheelectronappearsinthe s Severalfurtherexperimentshavebeendevotedtorelativistic c continuumaftertunnelingclosetotheatomiccore[51]. laser-inducedionization[4–10]. i s Numericalinvestigationofthedynamicsofhighly-charged Followingamorerigorousapproach,theeikonalapproxima- y ionsinsuper-strongfieldshasbeencarriedoutin[11–21]. The tion[52]hasbeenproposedtoapplyforstrongfieldproblems h standardanalyticalapproachesinthefieldofnonperturbative [53]. In the latter, nonrelativistic free-free transitions in the p [ laser-atominteractionarethestrongfieldapproximation(SFA) laserandtheCoulombfieldhavebeenconsideredemploying [22–24]andtheimaginarytimemethod(ITM)[25,26]. For aneikonalwavefunctionforthecontinuumelectron. Herethe 1 atheoreticaltreatmentoftherelativisticeffects,theSFAhas laser field is taken into account exactly, while the Coulomb v been generalized into the relativistic regime in [27, 28] and fieldisviatheeikonalapproximation. Theeikonalapproxima- 1 the ITM in [29–32], respectively. In the standard SFA the tionhasbeengeneralizedin[54]toincludequantumrecoilef- 6 7 influenceoftheCoulombfieldoftheatomiccoreisneglected fectsatphotonemissionandabsorption. ACoulomb-corrected 5 intheelectroncontinuumdynamicsandthelatterisdescribed SFAfornonrelativisticionizationemployingtheeikonalwave- . bytheVolkovwavefunction[33]. Accordingly,thepredictive functionhasbeenfirstproposedin[55]. Similarapproaches 1 0 poweroftheSFAisthebestfornegativeionswherenolong havebeenconsideredin[56–61]. Recently,thenonrelativistic 3 rangeforcesoftheparentsystemactontheionizedelectron. Coulomb-corrected SFA based on the eikonal-Volkov wave 1 ForatomsormoleculeswithlongrangeCoulombforcesthe functionforthecontinuumelectronhasbeenfurtherelaborated : performanceoftheSFAdowngradestoaqualitativelevel[34]. in[62,63]andappliedformolecularstrongfieldionizationand v i Thisistrueespeciallyforhighly-chargedions. high-orderharmonicgeneration. TheCoulomb-correctedSFA X Inthenon-relativisticregimetheITMhasbeensuccessfully hasalsobeenextendedtoincluderescatteringeffects[64,65]. r usedtotreatCoulombfieldeffectsduringtheionizationinthe Here the Coulomb field is taken into account exactly in the a quasi-staticregimeandthewell-knownquantitativelycorrect quasi-classical electron continuum trajectories that are later Perelomov-Popov-Terent’ev (PPT) ionization rate has been pluggedintothephaseofthequasi-classicalwavefunction. derived[35,36]. ThePPTtheoryusesthequasi-classicalwave Intherelativisticregime,similartothenonrelativisticcase, functionforthedescriptionofthetunnelingpartoftheelec- thestandardSFAisonlyexponentiallyexactsincetheCoulomb tron wave packet through the quasi-static barrier formed by field is neglected during ionization, whereas the ITM [29– thelaserandatomicfield,withmatchingofthequasi-classical 32]canprovidealsocorrectpreexponentialfactors. Canthe wavefunctiontotheexactboundstatewavefunction[37,38]. quantitatively correct relativistic ionization probabilities be derivedviatheSFAtechniqueaccountingCoulombfieldeffects accurately? Therelativisticgeneralizedeikonal-Volkovwave function(takingalsointoaccountquantumrecoil)hasbeen ∗Electronicaddress:[email protected] derived in [66]. The Coulomb corrected SFA based on this 2 wavefunctionhasbeenproposedin[67].However,finalresults A. ThestandardSFA have been obtained only in Born approximation, i.e. via an expansion of the eikonal wave function with respect to the Weconsiderahighly-chargedhydrogen-likeioninteracting Coulomb field, which, in fact, reduces the transition matrix withalaserfield. ThedynamicsisgovernedbytheHamilto- elementtotheoneinthestandardsecondorderSFA. nian With this paper we begin a sequel of papers in which H = H +H , (1) wedeveloptherelativisticCoulomb-correctedSFAbasedon 0 int theDiracequation,generalizingthenonrelativistictheoryof whereH istheHamiltonianoftheatomicsystem 0 [55,63]andapplyitforthecalculationofspin-resolvedquanti- tativelycorrectionizationprobabilities. RatherthantheVolkov H =pˆ2/2+V(r), (2) 0 wavefunction,theeikonal-Volkovwavefunctionisemployed asfinalstateoftheCoulombcorrectedSFA.Theinfluenceof withtheatomicpotentialV(r),themomentumoperatorpˆ and Coulombpotentialoftheatomiccoreontheionizedelectron coordinatevectorr(atomicunitsareusedthroughout). The continuumdynamicsistakenintoaccountviatheeikonalap- interactionHamiltonianduetothelaserfieldinlengthgaugeis proximation. Thelattermeansthatthequasi-classical(WKB) H (t)=r·E(t), (3) approximationisappliedfortheelectroncontinuumdynamics int and, additionally, the Coulomb potential is treated perturba- withthelaserelectricfieldE(t). Thetimeevolutionoperator tivelyinthephaseofthequasi-classicalwavefunction. The U(t,t )oftheatominthelaserfieldcanbeformulatedviathe 0 formalismisappliedfordirectionizationofahydrogen-like Dysonequation systeminastronglinearlypolarizedlaserfield. (cid:90) t Inthisfirstpaperofthesequel,webeginwiththenonrel- U(t,t )=U (t,t )−i dtU(t,t(cid:48))H (t(cid:48))U (t(cid:48),t ) (4) 0 0 0 int 0 0 ativisticCoulomb-correctedSFAtoshowinthemostsimple t0 case the scheme of the Coulomb-corrected SFA. The SFA whereU isthetimeevolutionoperatoroftheatomicsystem formalismisappliedtotreattheCoulombfieldeffectofthe 0 withoutthelaserfield. Thematrixelementforalaserinduced atomic core during ionization systematically and to obtain transitionfromtheinitialatomicgroundstate|φ(t)(cid:105)=|0(cid:105)eiIpt, quantitativelycorrectresultswhich,inparticular,forthetotal withthegroundstateenergy−I ,andtheionizationpotential ionizationratecoincidewiththePPTresult. Twoversionsof p I ≡ κ2/2, into a continuum eigenstate of the total system thetheorybasedonthevelocityandlengthgauge,respectively, p |ψ (t)(cid:105)withanasymptoticmomentumpisthengivenby areconsidered. ComparisonwiththePPTtheoryiscarriedout p andthephysicalrelevanceofthetwoversionsisdiscussed. A (cid:90) ∞ M =−i dt(cid:104)ψ (t)|H (t)|φ(t)(cid:105). (5) conclusionisdrawnconcerningtheschemeoftherelativistic p p int −∞ generalizationoftheCoulomb-correctedSFA.Inthesecondpa- perofthesequel,therelativisticCoulomb-correctedSFAwill In the SFA, the final continuum state is approximated by a bedeveloped,andthenextpaperinthesequelwillbedevoted Volkovstate|ψV(t)(cid:105),i.e. aneigenstateofaHamiltonian,where p tospineffectsinrelativisticabove-thresholdionization. the electron is only interacting with the laser field [33]. In coordinatespaceitisgivenby The plan of the paper is the following: In section II the nonrelativistic Coulomb-corrected SFA in the length gauge (cid:104)r|ψV(t)(cid:105)=exp[iS(0)(r,t)]/(2π)3/2. (6) is considered and differential and total ionization rates for p 0 hydrogen-likesystemsarederived. Thenextsectionisdedi- The function in the exponent S(0)(r,t) = (p + A(t)) · r + catedtotheCoulomb-correctedSFAinvelocitygauge. The (cid:82)∞dt(cid:48)(p+A(t(cid:48)))2/2istheclassi0calactionofanelectronin comparisonofthedifferentversionsoftheCoulomb-corrected t alaserfieldinthelengthgauge. NotethattheVolkovwave SFAiscarriedoutinSec.IV,andtheconclusionisgivenin functioncoincidesexactlywiththewavefunctioninthezeroth- Sec.V. order WKB approximation for the system. The ionization matrixelementintheSFAyields: (cid:90) ∞ M =−i dt(cid:104)p+A(t)|H (t)|0(cid:105)exp[−iS˜(t)] (7) p int −∞ II. NONRELATIVISTICCOULOMB-CORRECTEDSFAIN THELENGTHGAUGE with S˜(t) = (cid:82)∞dt(cid:48)[(p+A(t(cid:48)))2/2+κ2/2]. In the adiabatic t regime,whenthelaserfrequencyωissmallerthantheground stateenergyI andtheponderomotivepotentialU = E2/4ω2, InthissectionweshowhowthenonrelativisticCoulomb- p p 0 withthelaserfieldamplitude E , thetimeintegrationinEq. correctedSFAinthelengthgaugeisdeveloped. Ratherthan 0 (7)canbecarriedoutingoodaccuracyviathesaddlepoint theusualVolkovwavefunction,itemploystheeikonal-Volkov method(SPM),see,e.g.,[68]. Thisyields wave function to describe the electron continuum dynamics accurately,takingintoaccounttheCoulombfieldeffectofthe (cid:115) (cid:88) 2π atomic core. As we will see in this way the PPT ionization M =−i (cid:104)p+A(t )|H (t )|0(cid:105)exp[−iS˜(t )], (8) ratescanberecoveredwithintheSFAformalism. p iS¨˜(t ) s int s s s s 3 wheret aretheso-calledsaddlepointsoftheintegrablefunc- andthetotalionizationrate: s tiondefinedbyS˙˜(ts)=0. AfterapartialintegrationinEq. (7), (cid:114)3 E3/2 (cid:34) 2κ3(cid:35) thetransitionoperatorinthematrixelementcanbetransformed w(z) = 0 exp − . (15) fromHint toV(r)[69]: π2κ5/2 3E0 (cid:115) The SFA ionization rates of Eqs. (14) and (15) for a short (cid:88) 2π M =−i (cid:104)p+A(t )|V(r)|0(cid:105)exp[−iS˜(t )]. (9) rangepotentialcoincidewiththeITMresult[71].Thephysical p iS¨˜(t ) s s reasonisthatneglectingtheatomicpotentialaftertheelectron s s istransferredintothecontinuum,isjustifiedfornegativeions. Inthecaseofalonglaserpulsethedifferentialionizationrate isexpressedviathematrixelementasfollows[68]: C. SFAforahydrogen-likesystem dw ω = |M |2, (10) d3p 2π p Inthecaseofatomicionization,theCoulombpotentialof theioniccorecannotbeneglectedintheelectroncontinuum where the summation in Eq. (8) is carried out only over the dynamics. Therefore, to obtain an accurate ionization rate, saddlepointsofonelaserperiod. the wave function of the continuum state |ψ (t)(cid:105) in the SFA p ionization amplitude is approximated by the eikonal wave function(insteadoftheusualVolkovfunction)whichaccounts B. SFAforanegativeion fortheCoulombfieldeffectoftheioniccore[55,63]. Aswenotedintheprevioussection,theVolkovwavefunc- Thecalculationofionizationratesisstraightforwardinthe tionisidenticaltotheelectronwavefunctioninthelaserfield caseofionizationofanegativeion. Thelattercanbemodeled byazero-rangepotentialV(z)(r) = −(2π/κ)δ(r)∂ r, withthe in the zeroth order WKB-approximation. A systematic im- matrixelement(cid:104)p|V(z)|0(z)(cid:105)=−√κ/(2π)[70]. Inarsinusoidal provementofthisstatecomparedtotheexactcontinuumstate laser field A(t) = (E /ω)sin(ωt) the saddle point equation canbeachievedemployingtheWKB-approximationforthe 0 wavefunctionofanelectronexposedtothesimultaneousac- yields: tionofthelaserandtheCoulombfield. FromtheSchro¨dinger (cid:115) equationforanelectroninaCoulombpotentialV(c)(r)=−κ/r sin(ωt )=− pE +i γ2+(cid:32) p⊥ (cid:33)2 (11) andalaserfieldE(t) s E /ω E /ω 0 0 (cid:126)2 i(cid:126)∂ψ=− ∆ψ+V(c)ψ+r·E(t)ψ, (16) with the Keldysh parameter γ ≡ κω/E0, pE ≡ p·eˆ, p⊥ ≡ t 2 |p−(p·eˆ)eˆ|,eˆ ≡E /|E |. Inthetunnelingregime(γ(cid:28)1)the 0 0 theansatzψ=eiS/(cid:126)yieldsthefollowingequation saddlepointsinonelasercyclecanbegivenapproximatelyvia aperturbativesolutionofEq.(11)withrespecttoγ: (∇S)2 (cid:126)∆S −S˙ = +V(c)+r·E+ . (17) (cid:113) 2 i 2 (cid:34) (cid:35) κ2+p2 ωts1 = −arcsin Ep/Eω +i |E(t )|/ω⊥ UsingtheWKB-expansionS =S0+ (cid:126)iS1+...,weobtainthe 0 0 equation (cid:113) ωts2 = π+arcsin(cid:34)Ep0/Eω(cid:35)+i |Eκ(2t0+)|/pω2⊥. (12) (cid:32)(cid:126)i(cid:33)0 : −S˙0 = (∇S20)2 +V(c)+r·E(t), (18) (cid:113) with|E(t )|= E 1−(ωp /E )2. Insertingthesaddlepoints S0istheclassicalactionofanelectroninthelaserfieldandthe 0 0 E 0 intoEq.(10),yieldsthedifferentialionizationprobabilityofa atomicpotential. Intheeikonalapproximationthepartialdif- ferentialequationforS issolvedperturbativelyintheatomic negativeion 0 potential V(c). The zeroth order solution gives the Volkov- ddw3p(z) = 2π2|ωE(t0)|exp−2(cid:16)κ32|E+(tp02⊥)|(cid:17)3/2 (13) actioSn0(0)(r,t)=(p+A(t))·r+ 12(cid:90) ∞dt(cid:48)(cid:0)p+A(t(cid:48))(cid:1)2, (19) t Since the ratios pE/(E0/ω) and p⊥/(E0/ω) are smaller than with A(t) = −(cid:82)t dt(cid:48)E(t(cid:48)), whereas the first order solution oneinthecaseoftunnelionization,wecanexpandthefunc- −∞ reads tionintheexponentquadraticallyintermsofmomentumand (cid:90) ∞ neglectthedependenceinthepreexponentialfactor. Withthis S(1)(r,t)= dt(cid:48)V(c)(cid:0)r(t(cid:48))(cid:1), (20) wearriveatthedifferentialionizationrate: 0 t ddw3p(z) = 2πω2E0 exp−32Eκ30 − Eκ0p2⊥− κ33Eω032p2E, (14) w(cid:82)tti(cid:48)thdtt(cid:48)h(cid:48)pe(ttr(cid:48)(cid:48)a)jeacntdorpy(to)f≡thpe+elAec(ttr)o.nTihnetthimeelatsecranfiebledirn(tte(cid:48)r)p=retred+ 4 asthetimeandrasthecoordinateoftheionizationevent.Thus, verymomentofionization. Thus,itisjustifiedtoexpandthe theapproximatewavefunctionoftheelectroncontinuumstate argumentinS(1)describingthetrajectoryoftheelectron,upto 0 inthelaserandCoulombfield,whichistermedastheeikonal- secondorderaroundthesaddlepointt ,i.e. aroundtheinstant s Volkovwavefunction,inthenonrelativisticregimeis ofionization: 1 r(t(cid:48))=r+p(t )(t(cid:48)−t )−E(t )(t(cid:48)−t )2/2. (24) ψ(c)(r,t)= exp{iS(0)(r,t)+iS(1)(r,t)}. (21) s s s s p (2π)3/2 0 0 Further,themomentumdistributionoftheamplitudeisdom- inatedbytheexponentialfunctionthatislocatedaroundthe Ittakesintoaccounttheinfluenceoftheatomicpotentialquasi- laser polarization direction, i.e. we can assume in the pre- classicallyuptofirstorderandwillbeusedintheSFAampli- exponential function p = p eˆ and p(t ) = iκeˆ. Addition- tudeofEq. (5). E s ally,itcanbearguedthatthetunnelionizationstartsmainly Letusestimatetheapplicabilityoftheeikonalapproxima- tion givenby the condition S(1) (cid:28) S˜. The perturbedaction in the area around the laser polarization axis r = rEeˆ, i.e. (cid:82) 0 (cid:82) at the outskirts of the atom in direction of the laser elec- canbeestimatedS(1) ∼ V(c)dτ∼ dτx˙/x∼log(r /r )∼ √ 0 Ee Ei tric field. This typical value for the initial coordinate of log( Ea/E0)∼1,usingthepotentialV(c) ∼κ/rE (rE ≡r·eˆ), the trajectory r is justified via the saddle point condition (cid:82) the initial coordinate before tunneling rEi ∼ vcδτc, the ve- for the integral d3rexp[−ip(ts) · r − κr] which leads to locity vc ∼ κ, the uncertainty of the initial time δτc [in rs/rs = p(ts)/(iκ). Thus, the integrand in the expression of thelatter, weusethetime-widthofthesaddle-pointintegra- theCoulomb-correctionfactorofEq. (20)canbesimplified: (cid:113) √ tion δτc ∼ 1/ S¨˜(ts) ∼ 1/ κE0] and the tunnel exit coor- 1 = (cid:12) 1 (cid:12). (25) dinate rEe ∼ κ2/E0. While the Volkov-action is estimated r(t(cid:48)) (cid:12)(cid:12)rE +pE(ts)(t(cid:48)−ts)−E(ts)(t(cid:48)−ts)2/2(cid:12)(cid:12) S˜ ∼ p(τ )2τ +I τ ∼ E2τ3+I τ ∼ E /E withthetunneling timeτ ∼c γ/cω=pκc/E d0etcermipnecdbyathe0Keldyshparameter Furthermore,themotionaftertheelectronhasleftthebarrier, c 0 andtheatomicfieldE =κ3,theeikonalapproximationforthe contributesonlyasanunimportantphaseinthepreexponential a nonrelativisticionizationproblemisvalidwhen factor in Eq. (23) and the integration limit can be set at the tunnelexit: ωt = −arcsin(cid:2)p /(E /ω)(cid:3). Withthesesimplifi- 0 E 0 E0 (cid:28)1. (22) cationstheintegralinEq. (20)canbeevaluated: NotethatE0/Ea <1/16iEnathetunnelingionizationregimefor exp(cid:104)−iS0(1)(r,t)(cid:105) = −11++√√11++44λλ√11+4λ ahydrogen-likeion. To be able to handle the additional term S(1) in the ≈ 1 +O(λ), (26) 0 λ SFA transition amplitude, we have to make simplifica- t−ioVn(cs).(cid:16)rT+h(cid:82)e∞tidmt(cid:48)e(cid:48)pd(et(cid:48)r(cid:48)i)v(cid:17),atciovrereospfoSn0(d1s)tgoitvheenpbotyen∂titSal0(1e)n(rer,gt)yo≈f woridthertohfe√smEa0l/lEqau(cid:28)ant1it,yseλeE=q.√−(r22·)E.(Itns)f/a2cκt,2ownehiccahniesstoimf tahtee t λ ∼ x E /κ2 ∼ v τ E /κ2 ∼ E /E . We underline that in theionizedelectronintheremotefuture,afterithasescaped c 0 a c 0 0 a allexpressionsafterEq.(22)expansionsinthisparameterare fromtheboundstate. Sincetheelectronlefttheatomicsystem employed. afterionizationandrecollisionisnotconsideredhere,itspo- Wecometotheconclusionthatinthenonrelativisticregime tentialenergyisvanishingforasymptoticallylargetimesand thereforeitisjustifiedtouseS˙(1)(r,t)≈0. Consequently,the theCoulomb-correctedSFAamplitudediffersfromtheonein 0 thestandardSFAbythefollowingCoulomb-correctionfactor: additionaltermS(1) intheexponentoftheamplitudehasno influenceonthes0addlepointequationandleavesthesaddle Q =− 4Ip . (27) pointsunchanged[73],however,itcanchangethepreexponen- nr r·E(t ) s tialbyafactorexp[−iS(1)(r,t )]. Thus,theCoulomb-corrected 0 s Thetransitionamplitudecanthenbeexpressedinaverysimple SFAamplitudeofionizationreads: form: (cid:90) ∞ (cid:90) ∞ (cid:110) (cid:111) Mp(c) = −i −∞dt(cid:104)p+A(t)|Hint(t)exp[−iS0(1)(r,t)]|0(c)(cid:105) Mp(c) =4iIp −∞dt(cid:104)p+A(t)|0(c)(cid:105)exp −iS˜(t) . (28) (cid:104) (cid:105) ×exp −iS˜(t) , (23) Thissimpleformfortheionizationamplitudeinlength-gauge Coulomb-corrected SFA is achieved because the Coulomb- where|0(c)(cid:105)istheelectronboundstateintheCoulombpoten- correctionfactorQnr cancelsthedipoleinteractionfactorr·E tial. Thenexttaskistofindananalyticexpressionforthenew inthelength-gaugematrixelement. preexponential factor for times t = t . Physically, S(1)(r,t) Theoccurringmatrixelementissingularatthesaddlepoint: s 0 √ correspondstothesumofpotentialenergiestheelectronpos- 1 2 2κ5/2 sessesonitstrajectory. Whentheelectronhasleftthevicinity (cid:104)p+A(t)|0(c)(cid:105) = oftheatomiccore,thepotentialenergyissmallandthereare π(cid:2)κ2+(p+A(t))2(cid:3)2 (cid:114) no further contributions to S(1)(r,t). Since we consider the κ 1 0 = − , (29) tunnelingregimewhereE0/ω (cid:29) κ,thissituationsetsinata 2πE(ts)2(t−ts)2 5 whereinthelaststeponlytheleadingorderterminE /E is ThecorrespondingVolkovwavefunctiondescribingthefree 0 a retained, and the integral in Eq. (28)must be calculated via electroninthelaserfieldinthisgaugeis the modified SPM [68], taking into account the pole during theintegration. Comparedtothecaseofazero-rangepotential ψV(r,t)= √1 exp[ip·r+iS˜(t)]. (34) thisyieldsacorrectionfactorintheamplitudeof 2π3 M(c) 23/2E Inthecaseofionizationofanegativeion,theionizationampli- = a. (30) M(z) |E(t )| tudeinthestandardSFAinvelocitygaugeisgivenbyEq. (9) 0 wherethepreexponentialmatrixelementisreplaced: ThiscorrectionfactorisknownfromITM[35]butappearsto bereproduciblealsowiththeSFAtechnique. Thedifferential (cid:104)p+A(t)|V|0(cid:105) →(cid:104)p|V|0(cid:105). (35) ionizationrateinthecaseofaCoulombpotentialoftheatomic coreis Since the matrix element (cid:104)p|V|0(cid:105) is constant and does not dependonmomentuminthecaseofashort-rangepotential,it ddw3(pc) = π42ωEκ036 exp−23EEa0 − Eκ0p2⊥− κ33Eω032p2E, (31) iitshoenidiszetanattniiocdanalrdatomStphFleAito.undeeinfothrealneneggtahtigvaeuigoen.Tishgeareufgoer-ei,ntvhaeroiavnetrailnl InthecaseofaCoulomb-potentialasioniccorethesituation andthetotalionizationrateyields is different. Here the preexponential matrix-element is not (cid:114) (cid:34) (cid:35) a constant and the different momentum dependencies could 3 κ7/2 2κ3 w(c) = 4 exp − . (32) lead to a gauge dependence. The Coulomb corrected SFA πE1/2 3E0 basedontheeikonal-Volkovsolutioncanbedevelopedforthe 0 velocitygaugesimilartothatintheprevioussection.Thesame These rates are identical to the PPT-ionization rate [35, 36]. stepsleadtothefollowingfinalexpressionfortheionization The momentum distribution of the ionized electrons in the amplitude,cf. Eq.(28), non-relativisticregimeindicatesthattheemissionofelectrons withavanishingfinalmomentumismostprobable. Thelon- (cid:90) ∞ (cid:104) (cid:105) M(c) = −i dt(cid:104)p|Q p·A(t)+A(t)2/2 |0(c)(cid:105) gitudinal and the transversal widths of the distribution are p nr √ √ −∞ ∆ = E /E E /ωand∆ = E /E κ,respectively. (cid:110) (cid:111) (cid:107) 0 a 0 ⊥ 0 a ×exp −iS˜(t) . (36) Concludingthissection,withintheSFAS-matrixformalism andemployingtheeikonal-Volkovwavefunctionforthede- In contrast to the length gauge calculation, the saddle point scriptionofthelaser-drivenelectroncontinuumdynamicsdis- ofS˜ laysnotonthesingularityofthepreexponentialmatrix turbedbytheatomicCoulombpotential,aswellasneglecting elementandthestandardsaddlepointapproximationcanbe recollisions,onecanderivequantitativelycorrectdifferentialas applied. Ityieldsfortheamplitude wellastotalionizationratesthatcoincidewiththeexpressions obtainedwithinthePPTquasi-statictheory. Inthenextsection (cid:104) (cid:16) (cid:17)(cid:105) 2E p (p −2iκ)−2(p −iκ)κarctan pE weapplytheCoulomb-correctedSFAformalisminvelocity M(c) = a E E √ E κ gauge. p πp2|E(t )|3/2 E 0 III. NONRELATIVISTICCOULOMB-CORRECTEDSFA ×exp−(cid:16)κ23+|E(pt2⊥0)(cid:17)|3/2. (37) INVELOCITYGAUGE TheionizationdifferentialrateinthevelocitygaugeCoulomb- It is well known that the SFA is, in general, not gauge- correctSFAreads invariant and the SFA in different gauges correspond to dif- ftheereinotnpizhaytisoicnarlaatepporfoaxnimhyadtiroongse.n-IlniktehiisonseucstiinogntwheeCcoalucluolmatbe- ddw3(pc) = 4πκ26Eω03 exp−32Eκ30 − Eκ0p2⊥− κ33Eω032p2E cthoerrreecstuedltsSFoAftihnevPePloTcitthyegoaruygaen.dLathteer,lewnegwthi-lglacuogmepCaroeuiltowmitbh- ×1+ 4pκ22 − p4κ arctan(cid:18)pκE(cid:19)1+ 2pκ22 corrected SFA to answer the question: in which gauge the E E E Cofotuhleomiobn-iczoartrieocnterdateSFoAf aisnmhyodrerorgeelenv-lainktefioornt?heWcealcwuillaltuiosne + 4pκ22 arctan(cid:18)pκE(cid:19)21+ pκ22. (38) E E thisinformationinthenextpaperforthedevelopmentofthe relativisticCoulomb-correctedSFA. The ionization differential rate in the velocity gauge differs InvelocitygaugetheHamiltonianisgivenbyEq. (1)with fromthatinthelengthgauge,seeEq.(31),bytheexpression theinteractionHamiltonian inthecurlybracketsinEq.(38). Toobtainthetotalionization rate, the p -integration can be carried out analytically, but ⊥ H (t)=p·A(t)+A(t)2/2. (33) p -integrationhastobeaccomplishednumerically. int E 6 1.2 10 a 1.0 1 0.8 0.1 wPPT0.6 (cid:72) (cid:76) wPPT 0.01 wi0.4 (cid:144) wi0.001(cid:144) 10(cid:45)4 0.2 10(cid:45)5 0.0 0.02 0.03 0.04 0.05 0.06 0 20 40 60 80 100 E E ∆ 0 a 60 b FIG.2:TheratioofthetotalionizationratederivedintheSFAwith 50 respecttothePPTratevstheparamete(cid:144)rE0/Ea:(black,solid)inthe Coulomb-correctedSFAinlengthgauge,(green,dash-dotted)inthe 40 (cid:72) (cid:76) Coulomb-correctedSFAinvelocitygaugeforγ=0.1,(blue,dashed) ∆ 30 standardSFAwithaCoulomb-potential,(red,dotted)standardSFA withazero-rangepotential. 20 10 0 fieldusingtheCoulomb-correctedSFAinlengthandvelocity 5 10 15 20 gauge. InFig.2wecomparethetotalionizationratesinthese Z approximationswiththePPTionizationratefordifferentval- uesof E /E . Forcomparisonalsotheratesinthestandard 0 a FIG. 1: (a) The ratio of the total ionization rate derived in the SFAarepresentedusingashort-rangepotentialandaCoulomb Coulomb-correctedSFAwithrespecttothePPTratevstheparam- √ potential. Allapproximationsshowthesamequalitativebe- eterδ = E /E /γ: SFAinlengthgauge(black, solid), andSFA 0 a havior,buttheabsolutevaluesoftheratesdiffersignificantly. in velocity gauge (red, dashed); (b) The parameter δ for different nuclearchargesZ atafixedangularfrequencyω = 0.05a.u. and TheCoulomb-correctedSFAincreasestheionizationrateby E /E =1/25.ThelaserintensityisI=5.6×1019×(Z/10)6W/cm2. severalordersofmagnitude. Thisisinaccordancewiththein- 0 a tuitivepicturethattheCoulomb-potentiallowersthetunneling barrierandthereforefacilitatestunneling. Further,itshouldbe mentionedthattheCoulomb-correctionisonlydependingon In Fig. 1 (a) we compare the total ionization rate calcu- E0/Ea,butnot,e.g.,onIporω. latedwithintheCoulomb-correctedSFAinthelengthorve- Thus,fromtheresultsofthisandtheprevioussectionsone locitygaugewiththePPTratefordifferentvaluesofthepa- canconcludethattheCoulomb-correctedSFAshowsagood √ rameter δ = E /E /γ = (E /E )3/2(I /ω). This parame- agreementwiththePPTtheoryonlyinlengthgauge. Thisisa 0 a 0 a p ter arises since the deviation in the two gauges depends on messagethatshouldbetakenintoaccountinthegeneralization the curly bracket that is a function of p /κ with the typi- oftheCoulomb-correctedSFAintotherelativisticdomain. E cal value for the momentum in laser polarization direction √ p ∼∆ = E /E E /ω. Whilethelength-gaugeresultcoin- E (cid:107) 0 a 0 cideswiththePPTone,thevelocitygaugeresultstendstothe V. CONCLUSION PPT-rateonlyinthelimitsδ→0[55]andδ→∞,deviating fromthelatteratintermediatevaluesofδ. Thisisevidentfrom WehaveappliedtheCoulomb-correctedSFAforionization Eq. (38),sincethecurlybracketgoestooneinbothlimits. For ofhydrogen-likesystemsinastronglinearlypolarizedlaser intermediatevaluesoftheparameterδ,thedeviationcanbe field.Thenonrelativisticregimeisconsideredtoshowhowthis largerthanafactorof2. Notethatinthetunnelingregimethe approximationworksandhowtousethedevelopedprocedure parameterδcanvaryinthetotalrangeof(0,∞). InFig.1(b) forafurthergeneralizationoftheapproximationintotherela- we show the value of δ for different nuclear charges Z and tivisticdomain. TheappliedCoulomb-correctedstrong-field a suboptical angular frequency. It can be seen that for this approximationincorporatestheeikonal-Volkovwavefunction parametersetthevalueofδlaysinanareawheretheresultsin forthedescriptionoftheelectroncontinuumdynamics. The thetwogaugesdiffersignificantly. latter is derived in the WKB approximation taking into ac- counttheCoulombfieldoftheatomiccoreperturbativelyin thephaseoftheWKBwavefunction,i.e.,inphysicalterms, IV. COMPARISONOFDIFFERENTAPPROXIMATIONS thedisturbanceoftheelectronenergybytheCoulombfieldis assumedtobesmallerwithrespecttotheelectronenergyin Intheprevioussectionswehavecalculatedtheionization thelaserfield. Wehavederivedananalyticalexpressionfor ofahydrogen-likesysteminastronglinearlypolarizedlaser theionizationamplitudewithintheCoulomb-correctedSFA 7 in length and velocity gauge. A simple expression for the gauge. The SFA in different gauges, in fact, corresponds to amplitudeisobtainedwhenusingthelengthgaugewhichis different partitions of the total Hamiltonian used to develop due to the fact that the Coulomb correction factor (ratio of theSFA[72]. Therefore,onecanconcludethattherelativistic theCoulombcorrectedamplitudetothestandardSFAone)in generalizationoftheCoulomb-correctedSFA,whichwillbe thisgaugecancelsthefactoroftheelectric-dipoleinteraction carriedoutinthenextpaperofthissequel,shouldbebasedon Hamiltonian in the matrix element. Moreover, a Coulomb thepartitionofthetotalHamiltonianthatinthenonrelativistic correctionfactorcoincidingwiththatderivedwithinthePPT limitcorrespondstothepartitionofthelengthgaugeSFA. theoryisobtained. Thedifferentialandtotalionizationrates arecalculatedanalytically. Thecalculatedtotalionizationrate in length gauge is identical to the PPT-rate, while in the ve- Acknowledgments locitygaugeitcandeviatefromthePPTresultuptoafactor of2. TakingintoaccountthatthePPT-rateprovidesagood approximationforexperimentalresults,wecanconcludethat Valuable discussions with C. H. Keitel and C. Mu¨ller are theCoulomb-correctedSFAworkssuccessfullyinthelength acknowledged. [1] V.Yanovsky,V.Chvykov,G.Kalinchenko,P.Rousseau,T.Plan- (1966). chon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux, [26] V.S.Popov,Phys.Atom.Nuclei68,686(2005). G.Mourou,etal.,Opt.Express16,2109(2008). [27] H.R.Reiss,Phys.Rev.A42,1476(1990). [2] A.D.Piazza,C.Mu¨ller,K.Z.Hatsagortsyan,andC.H.Keitel, [28] H.R.Reiss,J.Opt.Soc.Am.B7,574(1990). Rev.Mod.Phys.84,1177(2012). [29] V.Popov,V.Mur,andB.Karnakov,JETPLetters66,229(1997). [3] C.I.Moore,A.Ting,S.J.McNaught,J.Qiu,H.R.Burris,and [30] V.Mur,B.Karnakov,andV.Popov,JETPLetters87,433(1998). P.Sprangle,Phys.Rev.Lett.82,1688(1999). [31] N.Milosevic,V.P.Krainov,andT.Brabec,Phys.Rev.Lett.89, [4] E.A.Chowdhury,C.P.J.Barty,andB.C.Walker,Phys.Rev.A 193001(2002). 63,042712(2001). [32] N.Milosevic,V.P.Krainov,andT.Brabec,J.Phys.B35,3515 [5] M.Dammasch,M.Do¨rr,U.Eichmann,E.Lenz,andW.Sandner, (2002). Phys.Rev.A64,061402(2001). [33] D.M.Wolkow,Z.Phys.94,250(1935). [6] K.Yamakawa,Y.Akahane,Y.Fukuda,M.Aoyama,N.Inoue, [34] O.Smirnova,M.Spanner,andM.Y.Ivanov,J.Phys.B39,S307 andH.Ueda,Phys.Rev.A68,065403(2003). (2006). [7] E.Gubbini,J.Phys.B38,L87(2005). [35] A.M.PerelomovandV.S.Popov,Zh.Exp.Theor.Fiz.52,514 [8] A. D. DiChiara, I. Ghebregziabher, R. Sauer, J. Waesche, (1967). S.Palaniyappan,B.L.Wen,andB.C.Walker,Phys.Rev.Lett. [36] M.V.Ammosov, N.B.Delone, andV.P.Krainov, Zh.Eksp. 101,173002(2008). Teor.Fiz.91,2008(1986). [9] S.Palaniyappan,R.Mitchell,R.Sauer,I.Ghebregziabher,S.L. [37] A.M.Perelomov,V.S.Popov,andV.M.Terent’ev,Zh.Exp. White,M.F.Decamp,andB.C.Walker,Phys.Rev.Lett.100, Theor.Fiz.51,309(1966). 183001(2008). [38] V.S.Popov,V.P.Kuznetsov,andA.M.Perelomov,Zh.Exp. [10] A.D.DiChiara,I.Ghebregziabher,J.M.Waesche,T.Stanev, Theor.Fiz.53,331(1967). N.Ekanayake,L.R.Barclay,S.J.Wells,A.Watts,M.Videtto, [39] M.JainandN.Tzoar,Phys.Rev.A18,538(1978). C.A.Mancuso,etal.,Phys.Rev.A81,043417(2010). [40] P.Cavaliere, G.Ferrante, andC.Leone, J.Phys.B13, 4495 [11] M.W.Walser,C.Szymanowski,andC.H.Keitel,EPL(Euro- (1980). physicsLetters)48,533(1999). [41] J.Z.Kaminski,Phys.Scr.34,770(1986). [12] S.X.HuandC.H.Keitel,Phys.Rev.Lett.83,4709(1999). [42] J.Z.Kamin´ski,Phys.Rev.A37,622(1988). [13] S.X.HuandC.H.Keitel,Europhys.Lett.47,318(1999). [43] P.Krstic´andM.H.Mittleman,Phys.Rev.A44,5938(1991). [14] M.Casu,C.Szymanowski,S.Hu,M.Casu,andC.H.Keitel,J. [44] J.Z.Kamin´ski,A.Jaron´,andF.Ehlotzky,Phys.Rev.A53,1756 Phys.B33,L411(2000). (1996). [15] S.X.HuandC.H.Keitel,Phy.Rev.A63,053402(2001). [45] J.Z.Kamin´skiandF.Ehlotzky,Phys.Rev.A54,3678(1996). [16] C.H.KeitelandS.X.Hu,Appl.Phys.Lett.80,541(2002). [46] M.F.Ciappina,C.C.Chirila˘,andM.Lein,Phys.Rev.A75, [17] M.W.Walser,D.J.Urbach,K.Z.Hatsagortsyan,S.X.Hu,and 043405(2007). C.H.Keitel,Phys.Rev.A65,043410(2002). [47] G.L.Yudin,S.Chelkowski,andA.D.Bandrauk,J.Phys.B39, [18] G.R.MockenandC.H.Keitel,J.Phys.B37,L275(2004). L17(2006). [19] G. Mocken and C. H. Keitel, Comp. Phys. Comm. 178, 868 [48] G.L.Yudin,S.Patchkovskii,P.B.Corkum,andA.D.Bandrauk, (2008). J.Phys.B40,F93(2007). [20] H.G.HetzheimandC.H.Keitel,Phys.Rev.Lett.102,083003 [49] G.L.YudinandS.P.A.D.Bandrauk,J.Phys.B41,045602 (2009). (2008). [21] H.Bauke,H.G.Hetzheim,G.R.Mocken,M.Ruf,andC.H. [50] F.H.M.Faisal,inStrongFieldLaserPhysics,Ed.T.Brabec Keitel,Phys.Rev.A83,063414(2011). (SpringerScience)p.391(2008). [22] L.V.Keldysh,Zh.Eksp.Teor.Fiz.47,1945(1964). [51] O.Smirnova,M.Spanner,andM.Y.Ivanov,J.Phys.B39,S323 [23] F.H.M.Faisal,J.Phys.B6,L89(1973). (2006). [24] H.R.Reiss,Phys.Rev.A22,1786(1980). [52] R. J. Glauber, inHigh-EnergyCollisionTheory, Lectures in [25] A.M.PerelomovandV.S.Popov,Zh.Exp.Theor.Fiz.50,1393 TheoreticalPhysicsVol.1(Interscience,NewYork,1959). 8 [53] J.I.GerstenandM.H.Mittleman,Phys.Rev.A12,1840(1975). 77,053409(2008). [54] H.K.Avetissian,A.G.Markossian,G.F.Mkrtchian,andS.V. [65] S.V.PopruzhenkoandD.Bauer,J.Mod.Opt.55,2573(2008). Movsissian,Phys.Rev.A56,4905(1997). [66] H.K.Avetissian,K.Z.Hatsagortsian,A.G.Markossian,and [55] V.P.Krainov,J.Opt.Soc.Am.B14,425(1997). S.V.Movsissian,Phys.Rev.A59,549(1999). [56] V. P. Krainov and B. Shokri, Zh. Eksp. Teor. Fiz. 107, 1180 [67] H.K.Avetissian,A.G.Markossian,andG.F.Mkrtchian,Phys. (1995). Rev.A64,053404(2001). [57] S.GordienkoandJ.M.terVehn,Proc.SPIE5228,416(2003). [68] G.GribakinandM.Kuchiev,Phys.Rev.A55,3760(1997). [58] S.P.Goreslavski,G.G.Paulus,S.V.Popruzhenko,andN.I. [69] W.Becker,F.Grasbon,R.Kopold,D.Milos˘evic´,G.G.Paulus, Shvetsov-Shilovski,Phys.Rev.Lett.93,233002(2004). andH.Walther,Adv.Atom.Mol.Opt.Phys.48,35(2002). [59] F.H.M.FaisalandG.Schlegel,J.Phys.B38,L223(2005). [70] D.B.Milosˇevic´andW.Becker,Phys.Rev.A66,063417(2002). [60] F.H.M.FaisalandG.Schlegel,J.Mod.Opt.53,207(2006). [71] V.S.Popov,B.M.Karnakov,andV.D.Mur,Zh.Exp.Theor. [61] C. C. Chirila˘ and R. M. Potvliege, Phys. Rev. A 71, 021402 Fiz.79,320(2004). (2005). [72] F.H.M.Faisal,Phys.Rev.A75,063412(2007). [62] O.Smirnova,A.S.Mouritzen,S.Patchkovskii,andM.Y.Ivanov, [73] Thisisincontrastto[64,65],whererecollisionsoftheionized J.Phys.B40,F197(2007). electronareconsideredandtheCoulombfieldinfluenceonthe [63] O. Smirnova, M. Spanner, and M. Ivanov, Phys. Rev. A 77, electrontrajectoryaftertheliberationfromtheatomisexplicitly 033407(2008). takenintoaccount. [64] S.V.Popruzhenko,G.G.Paulus,andD.Bauer,Phys.Rev.A