ebook img

A topological semigroup structure on the space of actions modulo weak equivalence PDF

0.09 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A topological semigroup structure on the space of actions modulo weak equivalence

A topological semigroup structure on the space of actions modulo 5 weak equivalence. 1 0 2 Peter Burton n a J January 20, 2015 9 1 Abstract ] S Weintroduceatopologyonthespaceofactionsmoduloweakequivalencefinerthantheonepreviously D studied in the literature. We show that the product of actions is a continuousoperation with respect to this topology, so that the space of actions modulo weak equivalence becomes a topological semigroup. . h t a 1 Introduction. m [ Let Γ be a countable group and let (X,µ) be a standard probability space. All partitions considered in this 1 notewillbeassumedtobe measurable. Ifaisameasure-preservingactionofΓon(X,µ)andγ ∈Γwewrite v γafortheelementofAut(X,µ)correspondingtoγundera. LetA(Γ,X,µ)bethespaceofmeasure-preserving 3 actions of Γ on (X,µ). We have the following basic definition, due to Kechris. 7 3 Definition 1. For actions a,b ∈ A(Γ,X,µ) we say that a is weakly contained in b if for every partition 4 (A )n of (X,µ), finite set F ⊆Γ and ǫ>0 there is a partition (B )n of (X,µ) such that 0 i i=1 i i=1 1. µ(γaAi∩Aj)−µ γbBi∩Bj <ǫ 0 (cid:12) (cid:0) (cid:1)(cid:12) 5 for all i,j ≤n and all γ ∈F. We w(cid:12)rite a≺b to mean that a is we(cid:12)akly contained in b. We say a is weakly 1 equivalent to b and write a∼b if we have both a≺b and b≺a. ∼ is an equivalence relation and we write : [a] for the weak equivalence class of a. v i X Formore informationonthe spaceofactions andthe relationofweakequivalence, werefer the readerto [3]. r LetA∼(Γ,X,µ)=A(Γ,X,µ)/∼bethesetofweakequivalenceclassesofactions. Freenessisinvariantunder a weakequivalence,sothesetFR∼(Γ,X,µ)ofweakequivalenceclassesoffreeactionsisasubsetofA∼(Γ,X,µ). Given [a],[b] ∈ A∼(Γ,X,µ) with representatives a and b consider the action a×b on X2,µ2 . We can choose an isomorphism of X2,µ2 with (X,µ) and thereby regard a×b as an action on(cid:0)(X,µ).(cid:1)The weak equivalence class of the re(cid:0)sulting (cid:1)action on (X,µ) does not depend on our choice of isomorphism, nor on the choice of representatives. So we have a well-defined binary operation × on A∼(Γ,X,µ). This is clearly associative and commutative. In Section 2 we introduce a new topology on A∼(Γ,X,µ) which is finer than theonestudiedin[1],[2]and[4]. Wecallthisthefinetopology. Thegoalofthisnoteistoprovethefollowing result. Theorem 1. × is continuous with respect to the fine topology, so that in this topology (A∼(Γ,X,µ),×) is a commutative topological semigroup. 1 In [4], Tucker-Drob shows that for any free action a we have a×s ∼ a, where s is the Bernoulli shift Γ Γ on [0,1]Γ,λΓ with λ being Lebesgue measure. Thus if we restrict attention to the free actions there is add(cid:0)itional alge(cid:1)braic structure. Corollary 1. With the fine topology, (FR∼(Γ,X,µ),×) is a commutative topological monoid. Acknowledgements. WewouldliketothankAlexanderKechrisforintroducingustothistopicandposingthequestionofwhether the product is continuous. 2 Definition of the fine topology. Fix an enumeration Γ=(γ )∞ of Γ. Given a∈A(Γ,X,µ), t,k ∈N and a partition A=(A )k of X into s s=1 i i=1 k pieces let MA(a) be the point in [0,1]t×k×k whose s,l,m coordinate is µ(γaA ∩A ). Endow [0,1]t×k×k t,k s l m with the metric given by the sum of the distances between coordinates and let d be the corresponding H Hausdorff metric on the space of compact subsets of [0,1]t×k×k. Let C (a) be the closure of the set t,k A M (a):A is a partition of X into k pieces . t,k (cid:8) (cid:9) We have a∼b if and only if Ct,k(a)=Ct,k(b) for all t,k. Define a metric df on A∼(Γ,X,µ) by ∞ 1 d ([a],[b])= supd (C (a),C (b)) . f 2t (cid:18) H t,k t,k (cid:19) Xt=1 k This is clearly finer than the topology on A∼(Γ,X,µ) discussed in the references. Definition 2. The topology induced by d is called the the fine topology. f We have [a ]→[a] in the fine topology if and only if for every finite set F ⊆Γ and ǫ>0 there is N so that n when n≥N, for every k ∈N and every partition (A )k of (X,µ) there is a partition (B )k so that l l=1 l l=1 k |µ(γanA ∩A )−µ(γaB ∩B )|<ǫ l m l m l,Xm=1 for all γ ∈F and l,m≤k. 3 Proof of the theorem. We begin by showing a simple arithmetic lemma. Lemma 1. Suppose I and J are finite sets and (ai)i∈I,(bi)i∈I,(cj)j∈J,(dj)j∈J are sequences of elements of [0,1] with a =1, d =1, |a −b |<δ and |c −d |<δ. Then |a c −b d |<2δ. i j i i j j i j i j Xi∈I Xj∈J Xi∈I Xj∈J (i,jX)∈I×J 2 Proof. Fix i. We have |a c −b d |≤ (|a c −a d |+|d a +d b |) i j i j i j i j j i j i Xj∈J Xj∈J = (a |c −d |+d |a −b |) i j j j i i Xj∈J ≤δa +|a −b |. i i i Therefore |a c −b d |≤ (a δ+|a −b |)≤2δ. i j i j i i i (i,jX)∈I×J Xi∈I We now give the main argument. Proof of Theorem 1. Suppose [a ] →[a] and [b ] →[b] in the fine topology. Fix ǫ >0 and t ∈N. Let N be n n large enough so that when n≥N we have ǫ max supd (C (a ),C (a)),supd (C (b ),C (b)) < . (1) H t,k n t,k H t,k n t,k (cid:18) (cid:19) 4 k k Fix n≥N. Letk ∈N be arbitraryandconsiderapartitionA=(A )k ofX2 intok pieces. Find partitions l l=1 D1 p and D2 q of X such that for eachl ≤k there are pairwise disjoint sets I ⊆p×q such that if we i i=1 i i=1 l w(cid:0)rit(cid:1)e D = (cid:0) (cid:1)D1×D2 then l i j (i,[j)∈Il ǫ µ2(D △A)< . (2) l l 4k2 Write (γ )t =F. By (1) we can find a partition E1 p of X such that for all γ ∈F we have s s=1 i i=1 (cid:0) (cid:1) p ǫ µ γaD1∩D1 −µ γanE1∩E1 < (3) i j i j 4 iX,j=1(cid:12) (cid:0) (cid:1) (cid:0) (cid:1)(cid:12) (cid:12) (cid:12) and a partition E2 q of X such that for all γ ∈F we have i i=1 (cid:0) (cid:1) q ǫ µ γbD2∩D2 −µ γbnE2∩E2 < . (4) i j i j 4 iX,j=1(cid:12) (cid:0) (cid:1) (cid:0) (cid:1)(cid:12) (cid:12) (cid:12) Define a partition B =(B )k of X2 by setting B = E1×E2. For γ ∈F we now have l l=1 l i j (i,[j)∈Il 3 k µ2(γa×bD ∩D )−µ2(γan×bnB ∩B ) l m l m l,Xm=1(cid:12) (cid:12) (cid:12) (cid:12) k = (cid:12)µ2γa×b Di11 ×Dj21∩ Di12 ×Dj22 l,Xm=1(cid:12)(cid:12)(cid:12)  (i1,[j1)∈Il  (i2,j[2)∈Im  (cid:12) −µ2γan×bn Ei11 ×Ej21∩ Ei12 ×Ej22(cid:12)  (i1,[j1)∈Il  (i2,j[2)∈Im (cid:12)(cid:12)(cid:12) (cid:12) k = (cid:12)µ2 γaDi11 ×γbDj21∩ Di12 ×Dj22 l,Xm=1(cid:12)(cid:12)(cid:12) (i1,[j1)∈Il  (i2,j[2)∈Im  (cid:12) −µ2 γanEi11 ×γbnEj21∩ Ei12 ×Ej22(cid:12) (i1,[j1)∈Il  (i2,j[2)∈Im (cid:12)(cid:12)(cid:12) (cid:12) k = µ2 γaD1 ×γbD2 ∩ D1 ×D2  (cid:12) i1 j1 i2 j2 l,Xm=1(cid:12)(cid:12)(cid:12)(cid:12) (i1∈,Ij[l1×,iI2m,j2)(cid:0) (cid:1) (cid:0) (cid:1) −µ2 γanE1 ×E2 ∩ γbnE1 ×E2  i1 j1 i2 j2 (cid:12) (i1∈,Ij[l1×,iI2m,j2)(cid:0) (cid:1) (cid:0) (cid:1)(cid:12)(cid:12)(cid:12)(cid:12) k = µ2 γaD1 ∩D1 × γbD2 ∩D2  (cid:12) i1 i2 j1 j2 l,Xm=1(cid:12)(cid:12)(cid:12)(cid:12) (i1∈,Ij[l1×,iI2m,j2)(cid:0) (cid:1) (cid:0) (cid:1) −µ2 γanE1 ∩E1 × γbnE2 ∩E2  i1 i2 j1 j2 (cid:12) (i1∈,Ij[l1×,iI2m,j2)(cid:0) (cid:1) (cid:0) (cid:1)(cid:12)(cid:12)(cid:12)(cid:12) k ≤ µ γaD1 ∩D1 µ γbD2 ∩D2 −µ γanE1 ∩E1 µ γbnE2 ∩E2 i1 i2 j1 j2 i1 i2 j1 j2 l,Xm=1(i1∈,IjXl1×,iI2m,j2)(cid:12)(cid:12) (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1)(cid:12)(cid:12) ≤ µ γaD1 ∩D1 µ γbD2 ∩D2 −µ γanE1 ∩E1 µ γbnE2 ∩E2 i1 i2 j1 j2 i1 i2 j1 j2 (∈i1p,×jX1q,×i2p,×j2q)(cid:12)(cid:12) (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1)(cid:12)(cid:12) = µ γaD1 ∩D1 µ γbD2 ∩D2 −µ γanE1 ∩E1 µ γbnE2 ∩E2 . (5) i1 i2 j1 j2 i1 i2 j1 j2 (i1∈,piX22,×j1q,2j2)(cid:12)(cid:12) (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1)(cid:12)(cid:12) 4 ǫ ǫ Now (3) and (4) let us apply Lemma 1 with I =p2,J =q2 and δ = to conclude that (5)≤ . Note that 4 2 for any three subsets S ,S ,S of a probability space (Y,ν) we have 1 2 3 |ν(S ∩S )−ν(S ∩S )|=|ν(S ∩S ∩S )+ν((S \S )∩S )−ν(S ∩S ∩S )−ν((S \S )∩S )| 1 3 2 3 1 2 3 1 2 3 1 2 3 2 1 3 ≤ν(S △S ), 1 2 hence for any l,m≤k and any action c∈A Γ,X2,µ2 we have (cid:0) (cid:1) µ2(γcA ∩A )−µ2(γcD ∩D ) l m l m (cid:12)(cid:12)≤ µ2(γcAl∩Am)−µ2(γcDl∩Am(cid:12)(cid:12) ) + µ2(γcDl∩Am)−µ2(γcDl∩Dm) (cid:12) (cid:12) ǫ(cid:12) (cid:12) ≤(cid:12)µ2(γcA△γcD )+µ2(A △D )≤(cid:12) (cid:12) , (cid:12) l l m m 2k2 where the last inequality follows from (2). Hence for all γ ∈F, k µ2(γa×bA ∩A )−µ2(γan×bnB ∩B ) l m l m l,Xm=1(cid:12) (cid:12) (cid:12) (cid:12) k ≤ µ2(γaA ∩A )−µ2(γaD ∩D ) + µ2(γa×bD ∩D )−µ2(γan×bnB ∩B ) l m l m l m l m l,Xm=1(cid:0)(cid:12) (cid:12) (cid:12) (cid:12)(cid:1) (cid:12) (cid:12) (cid:12) (cid:12) k ǫ ≤ + µ2(γa×bD ∩D )−µ2(γan×bnB ∩B ) 2k2 l m l m l,Xm=1(cid:16) (cid:12) (cid:12)(cid:17) (cid:12) (cid:12) ǫ ≤ +(5)≤ǫ. 2 A B Therefore M (a×b) is within ǫ of M (a ×b ) and we have shown that for all k, C (a×b) is contained t,k t,k n n t,k in the ball of radius ǫ around C (a ×b ). A symmetric argument shows that if n ≥ N then for all k, t,k n n C (a ×b ) is contained in the ball of radius ǫ around C (a×b) and thus the theorem is proved. t,k n n t,k References [1] M. Abert and G. Elek. The space of actions, partition metric and combinatorial rigidity. preprint, http://arxiv.org/abs/1108.2147,2011. [2] P. Burton. Topology and convexity in the space of actions modulo weak equivalence. preprint, http://arxiv.org/abs/1501.04079. [3] A.S. Kechris. Global aspects of ergodic group actions, volume 160 of Mathematical Surveys and Mono- graphs. American Mathematical Society, 2010. [4] R.D. Tucker-Drob. Weak equivalence and non-classifiability of measure preserving actions. Ergodic Theory and Dynamical Systems, to appear. http://arxiv.org/abs/1202.3101. Department of Mathematics California Institute of Technology Pasadena,CA 91125 [email protected] 5

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.