A Stroll Through QUANTUM FIELDS F ¸ G RANCOIS ELIS INSTITUT DE PHYSIQUE THE´ORIQUE CEA-SACLAY Contents 1 BasicsofQuantumFieldTheory 1 1.1 Specialrelativity . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Freescalarfields,Modedecomposition . . . . . . . . . . . . . . . 6 1.3 Interactingscalarfields . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4 LSZreductionformulas . . . . . . . . . . . . . . . . . . . . . . . . 14 1.5 Fromtransitionamplitudestoreactionrates . . . . . . . . . . . . . 17 1.6 Generatingfunctional . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.7 PerturbativeexpansionandFeynmanrules . . . . . . . . . . . . . . 27 1.8 Calculationofloopintegrals . . . . . . . . . . . . . . . . . . . . . 33 1.9 Ka¨llen-Lehmannspectralrepresentation . . . . . . . . . . . . . . . 36 1.10 Ultravioletdivergencesandrenormalization . . . . . . . . . . . . . 38 1.11 Spin1/2fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 1.12 Spin1fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 1.13 Abeliangaugeinvariance,QED . . . . . . . . . . . . . . . . . . . 57 1.14 Chargeconservation,Ward-Takahashiidentities . . . . . . . . . . . 60 1.15 Spontaneoussymmetrybreaking . . . . . . . . . . . . . . . . . . . 63 1.16 Perturbativeunitarity . . . . . . . . . . . . . . . . . . . . . . . . . 71 2 Functionalquantization 85 2.1 Pathintegralinquantummechanics . . . . . . . . . . . . . . . . . 85 2.2 Classicallimit,Leastactionprinciple. . . . . . . . . . . . . . . . . 89 2.3 Morefunctionalmachinery . . . . . . . . . . . . . . . . . . . . . . 89 2.4 Pathintegralinscalarfieldtheory . . . . . . . . . . . . . . . . . . 96 2.5 Functionaldeterminants. . . . . . . . . . . . . . . . . . . . . . . . 98 2.6 Quantumeffectiveaction . . . . . . . . . . . . . . . . . . . . . . . 101 2.7 Two-particleirreducibleeffectiveaction . . . . . . . . . . . . . . . 107 2.8 EuclideanpathintegralandStatisticalmechanics . . . . . . . . . . 114 i ii F.GELIS–ASTROLLTHROUGHQUANTUMFIELDS 3 Pathintegralsforfermionsandphotons 119 3.1 Grassmannvariables . . . . . . . . . . . . . . . . . . . . . . . . . 119 3.2 Pathintegralforfermions . . . . . . . . . . . . . . . . . . . . . . . 125 3.3 Pathintegralforphotons . . . . . . . . . . . . . . . . . . . . . . . 127 3.4 Schwinger-Dysonequations . . . . . . . . . . . . . . . . . . . . . 130 3.5 Quantumanomalies . . . . . . . . . . . . . . . . . . . . . . . . . . 133 4 Non-Abeliangaugesymmetry 143 4.1 Non-abelianLiegroupsandalgebras . . . . . . . . . . . . . . . . . 144 4.2 Yang-MillsLagrangian . . . . . . . . . . . . . . . . . . . . . . . . 152 4.3 Non-Abeliangaugetheories . . . . . . . . . . . . . . . . . . . . . 157 4.4 Spontaneousgaugesymmetrybreaking . . . . . . . . . . . . . . . 162 4.5 θ-termandstrong-CPproblem . . . . . . . . . . . . . . . . . . . . 168 4.6 Non-localgaugeinvariantoperators . . . . . . . . . . . . . . . . . 176 5 QuantizationofYang-Millstheory 187 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 5.2 Gaugefixing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 5.3 Fadeev-PopovquantizationandGhostfields . . . . . . . . . . . . . 191 5.4 Feynmanrulesfornon-abeliangaugetheories . . . . . . . . . . . . 193 5.5 On-shellnon-AbelianWardidentities . . . . . . . . . . . . . . . . 197 5.6 Ghostsandunitarity . . . . . . . . . . . . . . . . . . . . . . . . . . 199 6 Renormalizationofgaugetheories 211 6.1 Ultravioletpowercounting . . . . . . . . . . . . . . . . . . . . . . 211 6.2 Symmetriesofthequantumeffectiveaction . . . . . . . . . . . . . 212 6.3 Renormalizability . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 6.4 Backgroundfieldmethod . . . . . . . . . . . . . . . . . . . . . . . 223 7 Renormalizationgroup 231 7.1 Callan-Symanzikequations . . . . . . . . . . . . . . . . . . . . . . 231 7.2 Correlatorscontainingcompositeoperators . . . . . . . . . . . . . 234 7.3 Operatorproductexpansion. . . . . . . . . . . . . . . . . . . . . . 237 7.4 Example: QCDcorrectionstoweakdecays . . . . . . . . . . . . . 241 7.5 Non-perturbativerenormalizationgroup . . . . . . . . . . . . . . . 248 CONTENTS iii 8 Effectivefieldtheories 259 8.1 Generalprinciplesofeffectivetheories . . . . . . . . . . . . . . . . 260 8.2 Example: Fermitheoryofweakdecays . . . . . . . . . . . . . . . 264 8.3 Standardmodelasaneffectivefieldtheory . . . . . . . . . . . . . . 267 8.4 EffectivetheoriesinQCD. . . . . . . . . . . . . . . . . . . . . . . 274 8.5 EFTofspontaneoussymmetrybreaking . . . . . . . . . . . . . . . 284 9 Quantumanomalies 295 9.1 Axialanomaliesinagaugebackground . . . . . . . . . . . . . . . 295 9.2 Generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 9.3 Wess-Zuminoconsistencyconditions. . . . . . . . . . . . . . . . . 314 9.4 ’tHooftanomalymatching . . . . . . . . . . . . . . . . . . . . . . 318 9.5 Scaleanomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 10 Localizedfieldconfigurations 327 10.1 Domainwalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 10.2 Skyrmions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 10.3 Monopoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 10.4 Instantons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 11 Moderntoolsfortreelevelamplitudes 357 11.1 Shortcomingsoftheusualapproach . . . . . . . . . . . . . . . . . 357 11.2 Colourorderingofgluonicamplitudes . . . . . . . . . . . . . . . . 358 11.3 Spinor-helicityformalism . . . . . . . . . . . . . . . . . . . . . . . 364 11.4 Britto-Cachazo-Feng-Wittenon-shellrecursion . . . . . . . . . . . 374 11.5 Tree-levelgravitationalamplitudes . . . . . . . . . . . . . . . . . . 385 11.6 Cachazo-Svrcek-Wittenrules . . . . . . . . . . . . . . . . . . . . . 395 12 Worldlineformalism 407 12.1 Worldlinerepresentation . . . . . . . . . . . . . . . . . . . . . . . 407 12.2 Quantumelectrodynamics . . . . . . . . . . . . . . . . . . . . . . 413 12.3 Schwingermechanism . . . . . . . . . . . . . . . . . . . . . . . . 417 12.4 Calculationofone-loopamplitudes . . . . . . . . . . . . . . . . . . 420 iv F.GELIS–ASTROLLTHROUGHQUANTUMFIELDS 13 Latticefieldtheory 431 13.1 Discretizationofbosonicactions . . . . . . . . . . . . . . . . . . . 432 13.2 Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437 13.3 Hadronmassdeterminationonthelattice . . . . . . . . . . . . . . 441 13.4 Wilsonloopsandconfinement . . . . . . . . . . . . . . . . . . . . 442 13.5 Gaugefixingonthelattice . . . . . . . . . . . . . . . . . . . . . . 446 13.6 Latticeworldlineformalism . . . . . . . . . . . . . . . . . . . . . 450 14 Quantumfieldtheoryatfinitetemperature 457 14.1 Canonicalthermalensemble . . . . . . . . . . . . . . . . . . . . . 457 14.2 Finite-T perturbationtheory . . . . . . . . . . . . . . . . . . . . . 458 14.3 Largedistanceeffectivetheories . . . . . . . . . . . . . . . . . . . 477 14.4 Out-of-equilibriumsystems . . . . . . . . . . . . . . . . . . . . . . 492 15 Strongfieldsandsemi-classicalmethods 501 15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501 15.2 Expectationvaluesinacoherentstate . . . . . . . . . . . . . . . . 503 15.3 Quantumfieldtheorywithexternalsources . . . . . . . . . . . . . 509 15.4 ObservablesatLOandNLO . . . . . . . . . . . . . . . . . . . . . 510 15.5 Green’sformulas . . . . . . . . . . . . . . . . . . . . . . . . . . . 516 15.6 Modefunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527 15.7 Multi-pointcorrelationfunctionsattreelevel . . . . . . . . . . . . 531 Chapter 1 Basics of Quantum Field Theory 1.1 Special relativity 1.1.1 Lorentztransformations Specialrelativityplaysacrucialroleinquantumfieldtheories1. Variousobserversin framesthataremovingataconstantspeedrelativetoeachothershouldbeableto describephysicalphenomenausingthesamelawsofPhysics. Thisdoesnotimply that the equations governing these phenomena are independent of the observer’s frame,butthattheseequationstransforminaconstrainedfashion–dependingonthe natureoftheobjectstheycontain–underachangeofreferenceframe. LetusconsidertwoframesFandF ,inwhichthecoordinatesofagivenevent ′ arerespectivelyxµandx′µ. ALorentztransformationisalineartransformationsuch thattheintervalds2 dt2−dx2 isthesameinthetwoframes2. Ifwedenotethe ≡ coordinatetransformationby xµ =Λµ xν , (1.1) ′ ν 1Anexceptiontothisassertionisforquantumfieldmodelsappliedtocondensedmatterphysics,where thebasicdegreesoffreedomaretoaverygoodlevelofapproximationdescribedbyGalileankinematics. 2Thephysicalpremisesofspecialrelativityrequirethatthespeedoflightbethesameinallinertial frames,whichimpliessolelythatds2=0bepreservedinallinertialframes.Thegroupoftransformations thatachievesthisiscalledtheconformalgroup.Infourspace-timedimensions,theconformalgroupis15 dimensional,andinadditiontothe6orthochronousLorentztransformationsitcontainsdilatationsaswell asnon-lineartransformationscalledspecialconformaltransformations. 1 2 F.GELIS–ASTROLLTHROUGHQUANTUMFIELDS thematrixΛofthetransformationmustobey g Λµ Λν =g (1.2) µν ρ σ ρσ whereg istheMinkowskimetrictensor µν +1 −1 g . (1.3) µν ≡ −1 −1 Notethateq.(1.2)impliesthat Λµ = Λ−1 µ . (1.4) ν ν (cid:0) (cid:1) IfweconsideraninfinitesimalLorentztransformation, Λµ =δµ +ωµ (1.5) ν ν ν (withallcomponentsofωmuchsmallerthanunity),thisimpliesthat ω =−ω (1.6) µν νµ (with all indices down). Consequently, there are 6 independent Lorentz transfor- mations, threeofwhichareordinaryrotationsandthreeareboosts. Notethatthe infinitesimaltransformations(1.5)haveadeterminant3equalto+1(theyarecalled proper transformations), and do not change the direction of the time axis since Λ0 =1 0(theyarecalledorthochronous). Anycombinationofsuchinfinitesimal 0 ≥ transformationssharesthesameproperties,andtheirsetformsasubgroupofthefull groupoftransformationsthatpreservetheMinkowskimetric. (cid:13)csileGsiocnarF 1.1.2 RepresentationsoftheLorentzgroup Moregenerally,aLorentztransformationactsonaquantumsystemviaatransforma- tionU(Λ),thatformsarepresentationoftheLorentzgroup,i.e. U(ΛΛ )=U(Λ)U(Λ ). (1.7) ′ ′ ForaninfinitesimalLorentztransformation,wecanwrite i U(1+ω)=I+ ω Mµν . (1.8) µν 2 3Fromeq.(1.2),thedeterminantmaybeequalto 1. ± 1.BASICSOFQUANTUMFIELDTHEORY 3 (Theprefactori/2inthesecondtermoftherighthandsideisconventional.) Since theω areantisymmetric,thegeneratorsMµνcanalsobechosenantisymmetric. µν Byusingeq.(1.7)fortheLorentztransformationΛ−1Λ Λ,wearriveat ′ U−1(Λ)MµνU(Λ)=Λµ Λν Mρσ , (1.9) ρ σ indicatingthatMµνtransformsasarank-2tensor. Whenusedwithaninfinitesimal transformationΛ=1+ω,thisidentityleadstothecommutationrelationthatdefines theLiealgebraoftheLorentzgroup Mµν,Mρσ =i(gµρMνσ−gνρMµσ)−i(gµσMνρ−gνσMµρ). (1.10) When(cid:2)necessary,it(cid:3)ispossibletodividethesixgeneratorsMµνintothreegenerators Jiforordinaryspatialrotations,andthreegeneratorsKifortheLorentzboostsalong eachofthespatialdirections: Rotations: Ji 1ǫijkMjk , ≡ 2 Lorentzboosts: Ki Mi0 . (1.11) ≡ Inafashionsimilartoeq.(1.9),weobtainthetransformationofthe4-impulsionPµ, U−1(Λ)PµU(Λ)=Λµ Pρ , (1.12) ρ whichleadstothefollowingcommutationrelationbetweenPµandMµν, Pµ,Mρσ =i(gµσPρ−gµρPσ), Pµ,Pν =0. (1.13) (cid:2) (cid:3) (cid:2) (cid:3) 1.1.3 One-particlestates Letusdenote p,σ aone-particlestate,wherepisthe3-momentumofthatparticle, andσdenotesitsotherquantumnumbers. Sincethisstatecontainsaparticlewitha (cid:12) (cid:11) definitemome(cid:12)ntum,itisaneigenstateofthemomentumoperatorPµ,namely Pµ p,σ =pµ p,σ , withp0 p2+m2 . (1.14) ≡ Consider(cid:12)nowt(cid:11)hestate(cid:12)U(Λ(cid:11)) p,σ . Wehavpe (cid:12) (cid:12) PµU(Λ) p,σ =U(Λ) U(cid:12)−1(Λ(cid:11))PµU(Λ) p,σ =Λµ pνU(Λ) p,σ . (1.15) (cid:12) ν (cid:12) (cid:11) ΛµνPν (cid:12) (cid:11) (cid:12) (cid:11) (cid:12) (cid:12) (cid:12) Therefore,U(Λ) p,σ isa|neigen{sztateofm}omentumwitheigenvalue(Λp)µ,and wemaywriteitasalinearcombinationofallthestateswithmomentumΛp, (cid:12) (cid:11) (cid:12) U(Λ) p,σ = C (Λ;p) Λp,σ . (1.16) σσ′ ′ σ′ (cid:12) (cid:11) X (cid:12) (cid:11) (cid:12) (cid:12) 4 F.GELIS–ASTROLLTHROUGHQUANTUMFIELDS 1.1.4 Littlegroup Any positive energy on-shell momentum pµ can be obtained by applying an or- thochronousLorentztransformationtosomereferencemomentumqµthatliveson thesamemass-shell, pµ Lµ (p)qν . (1.17) ν ≡ Thechoiceofthereference4-vectorisnotimportant,butdependsonwhetherthe particleunderconsiderationismassiveornot. Convenientchoicesarethefollowing: m>0: qµ (m,0,0,0),the4-momentumofamassiveparticleatrest, • ≡ m=0: qµ (ω,0,0,ω),the4-momentumofamasslessparticlemovingin • ≡ thethirddirectionofspace. Then, wemaydefineagenericone-particlestatefromthosecorrespondingtothe referencemomentumasfollows p,σ N U(L(p)) q,σ , (1.18) p ≡ where(cid:12)N i(cid:11)sanumericalpre(cid:12)facto(cid:11)rthatmaybenecessarytoproperlynormalizethe (cid:12) p (cid:12) states. Thisdefinitionleadsto U Λ p,σ =N U L(Λp) U L−1(Λp)ΛL(p) q,σ . (1.19) p (cid:0) (cid:1)(cid:12) (cid:11) (cid:0) (cid:1) (cid:0) Σ (cid:1)(cid:12) (cid:11) (cid:12) (cid:12) NotethattheLorentztransformationΣ |L−1(Λ{zp)ΛL(}p)mapsqµintoitself,and ≡ thereforebelongstothesubgroupoftheLorentzgroupthatleavesqµinvariant,called thelittlegroupofqµ. Thus,whenU(Σ)actsonthereferencestate,themomentum remainsunchangedandonlytheotherquantumnumbersmayvary U(Σ) q,σ = C (Σ) q,σ . (1.20) σσ′ ′ σ′ (cid:12) (cid:11) X (cid:12) (cid:11) (cid:12) (cid:12) Moreover,thecoefficientsC (Σ)intherighthandsideofthisformuladefinea σσ′ representationofthelittlegroup, C (Σ Σ )= C (Σ )C (Σ ). (1.21) σσ′ 2 1 σσ′′ 2 σ′′σ′ 1 σ′′ X Massiveparticles: Inthecaseofamassiveparticles,thelittlegroupismadeof theLorentztransformationsthatleavethevectorqµ =(m,0,0,0)invariant,which isthegroupofallrotationsin3-dimensionalspace. Theadditionalquantumnumber σisthereforealabelthatenumeratesthepossiblestatesinagivenrepresentationof SO(3). Theserepresentationscorrespondtotheangularmomentum,butsinceweare intherestframeoftheparticle,thisisinfactthespinoftheparticle. Foraspins,the dimensionoftherepresentationis2s+1,andσtakesthevalues−s,1−s, ,+s. ···