EMS Monographs in Mathematics Edited by Ivar Ekeland (Pacific Institute, Vancouver, Canada) Gerard van der Geer (University of Amsterdam, The Netherlands) Helmut Hofer (Institute for Advanced Study, Princeton, USA) Thomas Kappeler (University of Zürich, Switzerland) EMS Monographs in Mathematics is a book series aimed at mathematicians and scientists. It publishes research monographs and graduate level textbooks from all fields of mathematics. The individual volumes are intended to give a reasonably comprehensive and selfcontained account of their particular subject. They present mathematical results that are new or have not been accessible previously in the literature. Previously published in this series: Richard Arratia, A.D. Barbour and Simon Tavaré, Logarithmic Combinatorial Structures: A Probabilistic Approach Demetrios Christodoulou, The Formation of Shocks in 3-Dimensional Fluids Sergei Buyalo and Viktor Schroeder, Elements of Asymptotic Geometry Demetrios Christodoulou, The Formation of Black Holes in General Relativity Joachim Krieger and Wilhelm Schlag, Concentration Compactness for Critical Wave Maps Jean-Pierre Bourguignon Oussama Hijazi Jean-Louis Milhorat Andrei Moroianu Sergiu Moroianu A Spinorial Approach to Riemannian and Conformal Geometry Authors: Jean-Pierre Bourguignon Oussama Hijazi IHÉS Institut Élie Cartan de Lorraine (IÉCL) Le Bois-Marie Université de Lorraine, Nancy 35 route de Chartres B. P. 239 91440 Bures-sur-Yvette, France 54506 Vandoeuvre-Lès-Nancy Cedex, France [email protected] [email protected] Jean-Louis Milhorat Andrei Moroianu Département de Mathématiques, Université de Versailles-St Quentin Université de Nantes Laboratoire de Mathématiques 2, rue de la Houssinière, B.P. 92208 UMR 8100 du CNRS 44322 Nantes, France 45 avenue des États-Unis 78035 Versailles, France [email protected] [email protected] Sergiu Moroianu Institutul de Matematica˘ al Academiei Române Calea Grivit‚ei 21 010702 Bucures‚ti, Romania [email protected] 2010 Mathematics Subject Classification: Primary: 53C27, 53A30, Secondary: 53C26, 53C55, 53C80, 17B10, 34L40, 35S05 Key words: Dirac operator, Penrose operator, Spin geometry, Spinc geometry, conformal geometry, Kähler manifolds, Quaternion-Kähler manifolds, Weyl geometry, representation theory, Killing spinors, eigenvalues ISBN 978-3-03719-136-1 The Swiss National Library lists this publication in The Swiss Book, the Swiss national bibliography, and the detailed bibliographic data are available on the Internet at http://www.helveticat.ch. This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of the copyright owner must be obtained. © 2015 European Mathematical Society Contact address: European Mathematical Society Publishing House Seminar for Applied Mathematics ETH-Zentrum SEW A27 CH-8092 Zürich, Switzerland Phone: +41 (0)44 632 34 36 | Email: [email protected] | Homepage: www.ems-ph.org Typeset using the authors’ TEX files: M. Zunino, Stuttgart, Germany Printing and binding: Beltz Bad Langensalza GmbH, Bad Langensalza, Germany ∞ Printed on acid free paper 9 8 7 6 5 4 3 2 1 Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 PartI Basicspinorialmaterial . . . . . . . . . . . . . . . . . . . . . . . . 9 1 Algebraicaspects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.1 Cliffordalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.1.2 ClassificationofCliffordalgebras . . . . . . . . . . . . . . 18 1.2 Spingroupsandtheirrepresentations . . . . . . . . . . . . . . . . 20 1.2.1 Spingroups . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.2.2 Representationsofspingroups . . . . . . . . . . . . . . . 28 1.2.3 Realandquaternionicstructures . . . . . . . . . . . . . . 36 2 Geometricalaspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.1 Spinorialstructures . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.1.1 Spinstructuresandspinorialmetrics . . . . . . . . . . . . . 39 2.1.2 Spinorialconnectionsandcurvatures . . . . . . . . . . . . 42 2.2 Spincandconformalstructures . . . . . . . . . . . . . . . . . . . . 45 2.2.1 Spincstructures . . . . . . . . . . . . . . . . . . . . . . . 45 2.2.2 Weylstructures . . . . . . . . . . . . . . . . . . . . . . . 49 2.2.3 SpinandSpincconformalmanifolds . . . . . . . . . . . . . 52 2.3 Naturaloperatorsonspinors . . . . . . . . . . . . . . . . . . . . . 56 2.3.1 Generalalgebraicsetting . . . . . . . . . . . . . . . . . . 57 2.3.2 First-orderdifferentialoperators. . . . . . . . . . . . . . . 59 2.3.3 Basicdifferentialoperatorsonspinorfields . . . . . . . . . 61 2.3.4 TheDiracoperator:basicpropertiesandexamples . . . . . 63 2.3.5 ConformalcovarianceoftheDiracandPenroseoperators . . 69 2.3.6 ConformallycovariantpowersoftheDiracoperator. . . . . 72 vi Contents 2.4 Spinorsinclassicalgeometricalcontexts . . . . . . . . . . . . . . . 73 2.4.1 Restrictionsofspinorstohypersurfaces . . . . . . . . . . . 73 2.4.2 Spinorsonwarpedproducts . . . . . . . . . . . . . . . . . 75 2.4.3 SpinorsonRiemanniansubmersions . . . . . . . . . . . . 76 2.5 TheSchrödinger–Lichnerowiczformula . . . . . . . . . . . . . . . 81 3 Topologicalaspects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.1 Topologicalaspectsofspinstructures . . . . . . . . . . . . . . . . 85 3.1.1 Cˇechcohomologyandprincipalbundles . . . . . . . . . . . 86 3.1.2 Liftingprincipalbundlesviacentralextensions . . . . . . . 88 3.1.3 Stiefel–Whitneyclasses . . . . . . . . . . . . . . . . . . . 90 3.2 TopologicalclassificationofSpincstructures . . . . . . . . . . . . . 91 3.3 Spinstructuresinlowdimensions . . . . . . . . . . . . . . . . . . 93 3.3.1 Dimension1 . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.3.2 Dimension2 . . . . . . . . . . . . . . . . . . . . . . . . . 94 3.3.3 Dimensions3and4 . . . . . . . . . . . . . . . . . . . . . 95 3.4 Examplesofobstructedmanifolds . . . . . . . . . . . . . . . . . . 96 4 Analyticalaspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.1 Fouriertransform . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.2 Pseudo-differentialcalculus . . . . . . . . . . . . . . . . . . . . . 101 4.2.1 Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.2.2 Asymptoticsummation . . . . . . . . . . . . . . . . . . . 102 4.3 Pseudo-differentialoperators . . . . . . . . . . . . . . . . . . . . 104 4.4 Compositionofpseudo-differentialoperators . . . . . . . . . . . . 107 4.5 Actionofdiffeomorphismsonpseudo-differentialoperators . . . . . 108 4.6 Pseudo-differentialoperatorsonvectorbundles . . . . . . . . . . . 109 4.7 Ellipticoperators. . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4.8 Adjoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.9 Sobolevspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.10 Compactoperators . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.11 Eigenvaluesofself-adjointellipticoperators . . . . . . . . . . . . . 121 PartII LowesteigenvaluesoftheDiracoperatoronclosedspinmanifolds . . 125 5 LowereigenvalueboundsonRiemannianclosedspinmanifolds . . . . . . 127 5.1 TheLichnerowicztheorem . . . . . . . . . . . . . . . . . . . . . . 127 5.2 TheFriedrichinequality . . . . . . . . . . . . . . . . . . . . . . . 129 5.3 Specialspinorfields . . . . . . . . . . . . . . . . . . . . . . . . . 133 5.4 TheHijaziinequality . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.5 TheactionofharmonicformsonKillingspinors . . . . . . . . . . . 140 Contents vii 5.6 OtherestimatesoftheDiracspectrum . . . . . . . . . . . . . . . . 142 5.6.1 Moroianu–Ornea’sestimate . . . . . . . . . . . . . . . . . 142 5.7 Furtherdevelopments . . . . . . . . . . . . . . . . . . . . . . . . 146 5.7.1 Theenergy–momentumtensor . . . . . . . . . . . . . . . 147 5.7.2 Witten’sproofofthepositivemasstheoremand applications . . . . . . . . . . . . . . . . . . . . . . . . . 148 5.7.3 Furtherapplications . . . . . . . . . . . . . . . . . . . . . 158 6 LowereigenvalueboundsonKählermanifolds . . . . . . . . . . . . . . . 161 6.1 Kählerianspinorbundledecomposition . . . . . . . . . . . . . . . 161 6.2 Thecanonicallinebundle . . . . . . . . . . . . . . . . . . . . . . 164 6.3 Kähleriantwistoroperators . . . . . . . . . . . . . . . . . . . . . 166 6.4 ProofofKirchberg’sinequalities . . . . . . . . . . . . . . . . . . . 170 6.5 Thelimitingcase . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 7 Lowereigenvalueboundsonquaternion-Kählermanifolds . . . . . . . . . 175 7.1 Thegeometryofquaternion-Kählermanifolds . . . . . . . . . . . . 176 7.2 Quaternion-Kählerspinorbundledecomposition . . . . . . . . . . 179 7.3 Themainestimate . . . . . . . . . . . . . . . . . . . . . . . . . . 182 7.4 Thelimitingcase . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 7.5 Asystematicapproach . . . . . . . . . . . . . . . . . . . . . . . . 202 7.5.1 GeneralWeitzenböckformulas . . . . . . . . . . . . . . . 202 7.5.2 Applicationtoquaternion-Kählermanifolds. . . . . . . . . 206 7.5.3 Proofoftheestimate . . . . . . . . . . . . . . . . . . . . 210 PartIII Specialspinorfieldandgeometries . . . . . . . . . . . . . . . . . . 213 8 SpecialspinorsonRiemannianmanifolds . . . . . . . . . . . . . . . . . 215 8.1 ParallelspinorsonspinandSpincmanifolds . . . . . . . . . . . . . 215 8.1.1 Parallelspinorsonspinmanifolds . . . . . . . . . . . . . . 215 8.1.2 ParallelspinorsonSpincmanifolds . . . . . . . . . . . . . 219 8.2 Specialholonomiesandrelationstowarpedproducts . . . . . . . . 223 8.2.1 Sasakianstructures . . . . . . . . . . . . . . . . . . . . . 223 8.2.2 3-Sasakianstructures . . . . . . . . . . . . . . . . . . . . 225 8.2.3 TheexceptionalgroupG2 . . . . . . . . . . . . . . . . . . 227 8.2.4 NearlyKählermanifolds. . . . . . . . . . . . . . . . . . . 229 8.2.5 ThegroupSpin7 . . . . . . . . . . . . . . . . . . . . . . . 233 8.3 ClassificationofmanifoldsadmittingrealKillingspinors . . . . . . . 236 8.4 DetectingmodelspacesbyKillingspinors . . . . . . . . . . . . . . 239 8.5 GeneralizedKillingspinors . . . . . . . . . . . . . . . . . . . . . 241 8.6 TheCauchyproblemforEinsteinmetrics . . . . . . . . . . . . . . 243 viii Contents 9 Specialspinorsonconformalmanifolds . . . . . . . . . . . . . . . . . . 251 9.1 TheconformalSchrödinger–Lichnerowiczformula . . . . . . . . . . 251 9.2 ParallelspinorswithrespecttoWeylstructures . . . . . . . . . . . . 254 9.2.1 ParallelconformalspinorsonRiemannsurfaces . . . . . . . 254 9.2.2 Thenon-compactcase . . . . . . . . . . . . . . . . . . . . 256 9.2.3 Thecompactcase . . . . . . . . . . . . . . . . . . . . . . 262 9.3 AconformalproofoftheHijaziinequality . . . . . . . . . . . . . . 263 10 SpecialspinorsonKählermanifolds . . . . . . . . . . . . . . . . . . . . 265 10.1 Anintroductiontothetwistorcorrespondence . . . . . . . . . . . . 265 10.1.1 Quaternion-Kählermanifolds . . . . . . . . . . . . . . . . 265 10.1.2 3-Sasakianstructures . . . . . . . . . . . . . . . . . . . . 267 10.1.3 Thetwistorspaceofaquaternion-Kählermanifold . . . . . 268 10.2 KählerianKillingspinors . . . . . . . . . . . . . . . . . . . . . . . 269 10.3 ComplexcontactstructuresonpositiveKähler–Einsteinmanifolds . . 272 10.4 ThelimitingcaseofKirchberg’sinequalities . . . . . . . . . . . . . 275 11 Specialspinorsonquaternion-Kählermanifolds . . . . . . . . . . . . . . 279 11.1 Thecanonical3-SasakianSO3-principalbundle . . . . . . . . . . . 280 11.2 TheDiracoperatoractingonprojectablespinors . . . . . . . . . . . 283 11.3 Characterizationofthelimitingcase . . . . . . . . . . . . . . . . . 288 11.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 PartIV Diracspectraofmodelspaces . . . . . . . . . . . . . . . . . . . . 301 12 Abriefsurveyonrepresentationtheoryofcompactgroups. . . . . . . . . 305 12.1 Reductionoftheproblemtothestudyofirreduciblerepresentations . 305 12.2 Reductionof theproblemtothestudy of irreduciblerepresentations ofamaximaltorus . . . . . . . . . . . . . . . . . . . . . . . . . . 315 12.3 Characterizationofirreduciblerepresentationsbymeansofdominant weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 12.3.1 Restrictiontosemi-simplesimplyconnectedgroups . . . . . 321 12.3.2 Rootsandtheirproperties . . . . . . . . . . . . . . . . . . 322 12.3.3 IrreduciblerepresentationsofthegroupSU2 . . . . . . . . 325 12.3.4 Proofofthefundamentalpropertiesofroots. . . . . . . . . 327 12.3.5 Dominantweights . . . . . . . . . . . . . . . . . . . . . . 334 12.3.6 TheWeylformulas . . . . . . . . . . . . . . . . . . . . . 339 Contents ix 12.4 Application: irreducible representations of the classical groups SUn, Spin ,andSp . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 n n 12.4.1 IrreduciblerepresentationsofthegroupsSUn andUn,n 3 . . . . . . . . . . . . . . . . . . . . . . . . 343 12.4.2 IrreduciblerepresentationsofthegroupsSpin n andSOn,n 3 . . . . . . . . . . . . . . . . . . . . . . . 348 12.4.3 IrreduciblerepresentationsofthegroupSp . . . . . . . . . 361 n 13 Symmetricspacestructureofmodelspaces . . . . . . . . . . . . . . . . . 369 13.1 Symmetricspacestructureofspheres . . . . . . . . . . . . . . . . . 372 13.2 Symmetricspacestructureofthecomplexprojectivespace . . . . . . 374 13.3 Symmetricspacestructureofthequaternionicprojectivespace. . . . 375 14 Riemanniangeometryofmodelspaces . . . . . . . . . . . . . . . . . . . 379 14.1 TheLevi-Civitaconnection . . . . . . . . . . . . . . . . . . . . . 381 14.2 Spinstructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388 14.3 Spinorbundlesonsymmetricspaces . . . . . . . . . . . . . . . . . 390 14.4 TheDiracoperatoronsymmetricspaces . . . . . . . . . . . . . . . 392 15 ExplicitcomputationsoftheDiracspectrum . . . . . . . . . . . . . . . . 395 15.1 Thegeneralprocedure . . . . . . . . . . . . . . . . . . . . . . . . 395 15.2 SpectrumoftheDiracoperatoronspheres . . . . . . . . . . . . . . 407 15.3 SpectrumoftheDiracoperatoronthecomplexprojectivespace . . . 409 15.4 SpectrumoftheDiracoperatoronthequaternionicprojectivespace . 412 15.5 Otherexamplesofspectra . . . . . . . . . . . . . . . . . . . . . . 414 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451