ebook img

A robust statistical estimation of the basic parameters of single stellar populations. I. Method PDF

1.5 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A robust statistical estimation of the basic parameters of single stellar populations. I. Method

Mon.Not.R.Astron.Soc.000,1–17(2007) Printed2February2008 (MNLATEXstylefilev2.2) A robust statistical estimation of the basic parameters of single stellar populations. I. Method 1 2 X. Hernandez and David Valls–Gabaud 1InstitutodeAstronom´ıa,UniversidadNacionalAuto´nomadeMe´xicoA.P.70–264,Me´xico04510D.F.,Me´xico 8 2GEPI,CNRSUMR8111,ObservatoiredeParis,5,PlaceJulesJanssen,92195MeudonCedex,France 0 0 2 Accepted...Received...;inoriginalform... n a J ABSTRACT 9 Thecolour-magnitudediagramsofresolvedsinglestellarpopulations,suchasopenandglob- ularclusters,haveprovidedthebestnaturallaboratoriestoteststellarevolutiontheory.Whilst ] h a variety of techniqueshave been used to infer the basic propertiesof these simple popula- p tions,systematicuncertaintiesarisefromthepurelygeometricaldegeneracyproducedbythe - similarshapeofisochronesofdifferentagesandmetallicities.Herewe presentanobjective o r androbuststatistical techniquewhichlifts this degeneracyto a greatextentthroughthe use t ofakeyobservable:thenumberofstarsalongtheisochrone.ThroughextensiveMonteCarlo s a simulationsweshowthat,forinstance,wecaninferthefourmainparameters(age,metallicity, [ distanceandreddening)inanobjectiveway,alongwithrobustconfidenceintervalsandtheir fullcovariancematrix.Weshowthatsystematicuncertaintiesduetofieldcontamination,unre- 2 solvedbinaries,initialorpresent-daystellarmassfunctionareeithernegligibleorwellunder v 1 control.Thistechniqueprovides,forthefirsttime,aproperwaytoinferwithunprecedented 8 accuracy the fundamentalproperties of simple stellar populations, in an easy-to-implement 0 algorithm. 1 . Keywords: methods:statistical–stars:statistics–globularclusters:general–openclusters 1 andassociations:general–Galaxy:stellarcontent 0 8 0 : v 1 INTRODUCTION theotherhand,reliesonthedifferenceinapparentmagnitudebe- i X tweenhorizontalbranch(HB)starsandturn-offstars.Bothmeth- r Thetheoryofstellarevolutionhasbeentestedextensivelymainly odsrelyheavilyon“semi-empiricalcalibrations”providedbystel- a larmodels,andaresubjecttomanyuncertainties(e.g.,Howtode- throughwell-studiedbinarystars(e.g.,Popper1980,Lastennet& fineproperlytheTOpointwhenphotometricerrorsblurthisregion Valls-Gabaud 2002, Ribas 2006) or simple, coeval stellar popu- ofthecolour-magnitudediagram?WhatistheverticaloffsetHB– lationssuch asopen and globular clusters (e.g.Vandenberg et al. TOwhentheHBisnothorizontal?)whichneverthelesshavebeen 1996,Renzini&FusiPecci1988).Ithasbeenextraordinarilysuc- tackled withsome success (e.g.Rosenberg et al. 1999, Salaris& cessful at explaining most stellar properties across the different Weiss2002). evolutionarystages,byincorporatingincreasinglycomplexphysics in both stellar interiors and atmospheres (see Salaris & Cassisi Here we want to point out that many of the degeneracies 2006 for an updated and extensive review). In contrast, and per- areactuallymereartifacts,andthat aproper andrigorous mathe- hapssomewhatparadoxically,thedeterminationofthefundamen- maticaltechniquecanbeformulatedtomeasuretheseparameters talparametersofsinglestellarpopulations, suchasdistance,age, inarobust and objective way. For example, thewell-known age- metallicity,reddening,convectiveparameters,etc,hasseldombeen metallicitydegeneracy,whichstatesthatagivenisochronecanbe thesubject of arigorousmathematical determination. Moreoften fittedwithadifferentage providedthemetallicityischanged ap- thannot,isochronesare“fitted”byeye,andveryroughestimates propriately, isa purelygeometricaldegeneracy : theshapeof the oferrorsaregiven,ifgivenatall.Thereasonforthisstateofaffairs isochronesisthesame,yetstellarevolutionpredictsthatstarswith isperhapsthemanydegeneraciesbetweentheseparameters,which a different metal content will evolve at a differentspeed. Hence, makesitseeminglyimpossibletofindauniquesolutiontothesetof theage-metallicitydegeneracyisnotaphysicalone,butsimplya fundamentalparameters.Alternative,semi-empiricalmethodshave resultofusingthegeometricalshapeofisochronesastheonlydis- beendevelopedinsteadtoinferrelativequantities,ratherthanab- criminantfactor. Clearly,asimplestatisticalestimatorthatwould soluteones.Forinstance,theso-calledhorizontalmethodrelieson countthenumberofstarsalongtheisochroneswouldgiveverydif- the difference in colour between the turn-off (TO) point and the ferentresultsforanypairofage/metallicityvaluesthatwouldgive baseoftheredgiantbranch(RGB),andisindependent oftheas- the same geometrical shape to the isochrones. In a more formal sumptionsmadeontheconvectivetheory.Theverticalmethod,on way,letusconsideracurvilinearcoordinatesalonganisochrone 2 X. HernandezandD. Valls–Gabaud ofgivenparameters(say,distance,reddening,metallicity,age,al- detailsalong the RGB.Clearly, theoptimal strategy isto use the phaelementsenhancement,etc).Thispositiondependsonlyonthe fullinformationprovidedbytheobserveddensityofstarsalongthe agetofthatisochroneandonthemassmofthestaratthatprecise isochrone. locus,sothats=s(m,t)only.Anoffsetinagedtisreflectedonly throughchangesinmassmandpositionsalongtheisochroneof Tosummarizeexistingmethods,oneapproachhasgrownout agetsince of thefittingof ’geometrical’ indicators of theobserved CMD to isochrones,fromsingleparticularindicatorssuchasturnoffpoint ∂t ∂t dt(m,s) = dm + ds . (1) (TO), magnitude or colour difference between two points on the ∂m(cid:12)s ∂s(cid:12)m CMD, TO vs. zero-age horizontal branch or tip of the RGB and (cid:12) (cid:12) Forastarinthisis(cid:12)ochronetheoff(cid:12)setis,bydefinition,zero,hence RGB bump position and combinations thereof. Examples can be ∂m ∂m ∂s −1 found in Renzini & Fusi Pecci (1988), Buonanno et al. (1998), = − × . (2) Salaris&Cassisi(1998), Salaris&Weiss(1998), VandenBerg& ∂s (cid:12)(cid:12)t ∂t (cid:12)(cid:12)s (cid:16)∂t(cid:12)(cid:12)m(cid:17) Durrel (1990), Ferraro et al. (1999) and Rosenberg et al. (1999). The fi(cid:12)rst term is alw(cid:12)ays finite.(cid:12)The second term is the evolution- Theaccuracyoftheseapproacheshasbeenextendedbyincluding aryspeed,therateofchangeforagivenmassmofitscoordinate several such geometrical indicators simultaneously (e.g. Vanden- alongtheisochronewhentheagechangesbysomesmallamount. Berg 2000, Meissner & Weiss 2006), or a complete geometrical One can thinkof s asrepresenting some evolutionary phase, and comparisonbetweenobservedCMDandisochrone(e.g.Straniero so this term will be largewhen the phase is short-lived : a small & Chieffi 1991). The reduction of the CMD to a few numbers, variation in age yields a very large change in position along the given the varied and complex physics which enters in determin- isochrone.Alternatively,foragivenage,andsincethefirsttermis ingthemimpliesusingonlyasubsetoftheinformationavailablein alwaysfinite,awidevariation inpositionimpliesanarrow range theCMD,whiletheunavoidableobservationalerrorspresentnec- inmass.Thisisthecaseoftheredgiantbranchorthewhitedwarf essarilyleadtoambiguitiesintheidentificationofthekeypointsto coolingsequence1,forinstance.Ontheotherhand,slowlyevolving beused, whicharehardtoquantifyformally, andwhichresultin phasessuchasthemainsequencehavesmallevolutionaryspeeds uncertainconfidenceintervalsbeingassignedtotheinferencesde- and wide ranges in mass for a given interval along an isochrone. rived.Neglectingstellarevolutionaryeffectslimitstheinformation Clearly, themost important phases todiscriminatebetween alter- contentoftheisochronesagainstwhichtheCMDsarecompared. nativeagesandmetallicitieswillbethepostmain-sequenceones, wheretherangeofmassissmall(andhenceinsensitivetothede- Ontheotherhand,approachesconcentratingexplicitlyonthe tailsofthestellarmassfunction),andatthesametimewhereevo- stellar evolutionary effects have grown out of the already men- lutionaryspeeds arelarge.Ifweconsider themid-tolower main tioned analysis of luminosity functions presented by Paczyn´ski sequence,atfixedmetallicity,isochronesofallagestracethesame (1984), a projection of the CMD onto the vertical axis. Exten- locus, with only marginal changes in the density distribution of sionshavemostlycenteredontheeasytomeasureandagesensitive pointsamongstthem.Inthissense,oneoftheparameters,t,isto featuresoftheRGBluminosityfunction(e.g.Jimenez&Padoan, alargeextentabsentfromthemainsequence,whilephasesbeyond 1998,andZoccali&Piotto2000).Hereagain,observationalerrors arealwayssubstantiallyafunctionofbothageandmetallicity.The together withthe binning adopted in generating luminosity func- densityofstarsalonganisochroneistherefore tions, imply a limited use of the information available in the ob- dN dN ∂m ∂t servation,whilenotincludingtheinformationencodedbythege- = − × × . (3) ds (cid:16)dm(cid:17) (cid:16) ∂t (cid:12)s(cid:17) (cid:16)∂s(cid:12)m(cid:17) ometryofboththeCMDandisochroneslimitstheaccuracyofthe (cid:12) (cid:12) inferences. Thefirsttermisrelatedtoth(cid:12)einitialstel(cid:12)larmassfunction(IMF), and,asdiscussedabove,thesecondtermisfinitewhilethethirdisa There are have been a few attempts in the past at using the strongfunctionoftheevolutionaryspeed.Ifthemassaftertheturn- full information available inacolour-magnitude diagram, as pio- offisassumedtoberoughlyconstant,thisimpliesthattheratioin neered by Flannery & Johnson (1982) and further developed by the number of stars in two different evolutionary stages after the Wilson & Hurrey (2003) and Naylor & Jeffries (2006). Unfortu- turn-off will only depend on the ratio of their evolutionary time nately all these approaches, while mathematically correct, fail to scales2. includeproperlythekeydiscriminatingfactordiscussedabove,the Intermsofobservables,thiswell-knowrelationhasbeenex- stellar evolutionary speed, resulting in wide uncertainties in the ploited using luminosity functions as a proxy (as pioneered by inferred parameters. The only other attempt we are aware of, in Paczyn´ski 1984), that is, number counts of stars as a function of thecontext ofinferringparametersfromastellarpopulation, was apparent magnitude. This is not the isochrone coordinate s, but madebyJørgensen&Lindegren(2005),whoadaptedourformal- rather the projection of the isochrone on the vertical axis of the ism developed in a previous paper (Hernandez, Valls-Gabaud & colour-magnitudediagram.Thefactthatthesub-giantbranchoften Gilmore1999)toderivestellarages.Thepresentpaperisafurther appearsnearlyhorizontalinCMDsimpliesthatluminositybinsin androbustextensionofthisapproach.PaperIIinthisseries(Valls- this regime will not be discriminant. This is unfortunate because Gabaud&Hernandez2007)willapplythemethodtodifferentsets thisphaseismoreheavilypopulatedthantheredgiantbranch,and ofobservationsofstellarpopulations. thustheuseof luminosityfunctionsisnotoptimal. Likewise,the projection onthehorizontal axis, acolour, islesssensitivetothe In section 2 we present the rigorous probabilistic model, whichistestedwithsyntheticcasesinSection3.Insection4weex- ploreandquantifytheeffectsofsystematicuncertainties,insection 1 excludingthebottomofthecoolingsequence,wherewhitedwarfshaving 5wepresentanapplicationofthemethodtoarealcase,NGC3201. alargerangeofprogenitormassespileup 2 Inthecontextofstellarpopulation synthesis,thisisknownasthefuel Finallyinsection 6wepresent our conclusions on thisnovel ap- consumptiontheorem(Renzini&Buzzoni1983). proach. Robuststatisticalmeasures ofsinglestellarpopulations 3 2 PROBABILISTICMODEL where σ(L )2 and σ(C )2 are the errors which have to be ap- m m pliedtothetheoreticalcomparisonstarofmassmtomapinonto Intryingtorecoverthephysicalparametersofanobservedcluster, theobservedCMD.i.e.,eachtheoreticalstarisbeingthoughtofas webeginbyconstructingamodelwhereonly4numbersdetermine aGaussianprobabilitydensitydistributioncenteredon(L ,C ), theabove,theage,metallicity,distanceandreddeningoftheclus- m m withdispersionsσ(L )andσ(C ).Equation4ishenceequiva- ter,avector(T,Z,D,R).Henceforth,wewilldefineDasthetotal m m lenttotheconvolutionovertheentireCMDplaneoftwoGaussian verticaldisplacementofthestarsintheobservedCMDwithrespect probabilitydistributions,afirstonecomingfromthereportedob- totheir original positions.Thisverticaldisplacement isofcourse servedstar,andasecondonefromtheprobabilistictransferfunc- thedistancemodulusandthecontributionoftheextinctioninthe tionwhichwemustapplytoatheoreticalmodelstarcomingfrom observedband,thatis,D = µ+R × R,whereRisthecolour V anisochronetomapitontoaparticularobservedCMD. excessinthebandsconsideredandR theratioofselectivetototal V Ifwewantedtoconsidermodelstarsasmathematicalpointsin absorption.Notethatthesecontributionsare,ingeneral,correlated, thiscomparison,followingBayestheorem,wewouldidentifythe sinceatlargerdistancesthereddeningusuallyincreaseswithinthe probabilitythataparticularreportedrealstar,itselfa2-Dprobabil- Galaxy.NotealsothatR maydependonthelineofsightconsid- V itydistribution,wasinfactacertainmodelstar,withtheprobabil- ered,eventhoughauniversalextinctioncurveisusuallyassumed. itythatthisparticularmodelstarmightactuallycomefromthe2-D Forthesereasonsitissimpler(andmodel-independent)toconsider probability distribution of the reported star. To treat the problem a vertical offset, and a horizontal one, the colour excess, as two rigorously, we consider only the comparison between a reported independentquantities. starandamodelone,onlyafterthislastonehasbeenmappedonto Thus,weassumetheIMFtobeknown,thebinaryfractionto theplanewheretheobservedstarexists,throughaprobabilityfunc- be zero and the contamination of background/foreground starsto tion,asdescribedabove. benegligible.Thisconditionsareofcoursenottrueinarealcase, InEquation4anumericalnormalizationconstanthasbeenleft andwewillthereforetreatthemassystematics,theeffectsofwhich out,asinanycaselikelihood functionshavenoabsolute normal- weshallexploreindetailinsection4. izations and only relative values are meaningful. Whereas σ(L ) FromaBayesianperspective,givenanactualobservedCMD, i andσ(C )aresuppliedbyaparticularobservationofarealCMD, we want to identify the vector (T,Z,D,R) which has the high- i σ(L )andσ(C )havetobeestimated.Inapracticalapplication, est probability in having resulted in the actual observed cluster, m m onecouldobtaintheaverageofσ(L )andσ(C ),asfunctionsof as that from which the CMD most probably actually came from. i i magnitude,andusethosetwofunctionsasmodelsforσ(L )and Thismodel isessentially what was introduced and tested inHer- m σ(C ). nandez et al. (1999), and subsequently used in Hernandez et al. m Havingtheprobabilitythatasingleobservedstarisinfacta (2000a,2000b)toinferstarformationhistoriesofresolvedgalax- particularmodelstar,wecannowcomputetheprobabilitythatour ies,althoughmuchsimplifiedhereforthetreatmentofsinglestellar observedstarcamefromanypointalongaparticularisochronein populations. Wemustconstruct astatisticalmethodfordetermin- ourparameterspace(T,Z,D,R)as: ingwhatistheprobabilitythatanobservedCMDmighthavebeen theresultofagivenvector (T,Z,D,R).AnobservedCMDwill m1(T,Z) be defined by a set of i = 1 ··· N stars, each having a mea- ⋆ G (T,Z,D,R)= ρ(m;T,Z)G (T,Z,D,R,m)dm.(6) sured magnitude and colour (in whichever photometric bands or i Z i filters) (Li,Ci), with σ(Li) and σ(Ci) being the measured (de- m0(T,Z) ducedfromphotometrydatareductionprocedures)1-sigmaerrors In the above expression ρ(m;T,Z) is the density of stars in these quantities. Errors in magnitudes and colours will be as- alongtheisochroneofmetallicityZandageT,aroundtheteststar sumedasbeingGaussianinnature,anduncorrelatedtoeachother ofmassm.Asexplainedin§1,thisdensitydependsbothontheas- forthetimebeing.Hence,areportedstar(L ,C ;σ(L ),σ(C )), i i i i sumedIMFandontheevolutionaryspeedpredictedbythestellar willbethoughtofasatwo-dimensionalGaussianprobabilityden- evolutioncodeatthatpositionoftheCMD.Thedensityofpoints sitydistribution,centeredon(L ,C ),withdispersionsσ(L ),and i i i alongtheisochrone,withinacertainintervalaroundacertainmass, σ(C ). i inthehighlydiscriminatingregionbeyondthemainsequence,will We begin with the probability that a given observed star, of be determined essentially by the time spent by a star within that magnitudeandcolour(L ,C ),isinfactarealstarofsomeaget, i i interval,asgivenbythestellarevolutionarycodes.Ifalargepor- andsomemetallicity,Z,ofmassm,luminosityL andcolourC , m m tion of the main sequence is included in the study, the IMF will observedwithanassumedverticaloffsetofD,andareddeningof dominateρ(m;T,Z) overthatregion, asdiscussedin§1. Onthe R,bothinunitsofmagnitudes.Thiswillbegivenby otherhand,themassintervalbeyondtheturnoffpointissosmall, thatpracticallyanyconceivableIMFwillyieldidenticalresultsfor Gi(T,Z,D,R,m) = ρ(m;T,Z)inthisregion.TheRBGhasalowerdensityofpoints thanthemainsequencenotbecauseoftheIMF,butbecauseofthe 1 × faststellarevolutionaryspeeds. (cid:18)σL(m,i)σC(m,i)(cid:19) In practice, the extremely rapid variations in magnitude and × exp −DL2(m,i) ×exp −DC2(m,i) . (4) colour with mass over critical regions of the isochrones make it (cid:18) 2σ2(m,i) (cid:19) (cid:18) 2σ2(m,i) (cid:19) convenient to carry out the integration in Equation 6 over a pa- L C rameter measuring length over the isochrone, rather than mass, IntheaboveexpressionD (m,i)andD (m,i)arethedif- L C in which case ρ(m;T,Z) must include weighting factors due to ferencesinmagnitudeandcolourbetweentheithobservedstarand the relative duration of different stellar phases. Also, m (T,Z) agenericstarofage,metallicity,distancemodulus,reddeningand 0 and m (T,Z) are a minimum and a maximum mass considered mass(T,Z,D,R;m).Also, 1 alongeachisochrone,suchthattheluminositycompletenesslimit σ2(m,i)=σ(L )2+σ(L )2 , σ2(m,i)=σ(C )2+σ(C )2,(5) of the observations always corresponds to the luminosity of star L i m C i m 4 X. HernandezandD. Valls–Gabaud m (T,Z), while m (T,Z) corresponds to the star of age and whichsomeoftheoffspringsineachgenerationhavearandomly 0 1 metallicity (T,Z) at the tip of the RGB. The explicit exclusion selected“gene”switchedfrom“1”to“0”,orvice-versa.Thissim- of phases beyond thehelium flashreduces to acertain extent the plisticalgorithmhasbeenshowntoconvergeremarkablyefficiently resolutionofthemethod,butincreasessignificantlyitsrobustness, intotheglobalmaximumofcomplexmulti-dimensional surfaces, asitguarantees (seesection4) thatonly well-establishedphysics associatedtoverydifferentproblems.Amorecompletedescription areconsideredinthestellarevolutionarymodels. ofthealgorithmcanbefoundinCharbonneau(1995),withsuccess- We shall refer to G (T,Z,D,R) as the likelihood matrix, fulapplicationstodiverseastrophysicalproblemsbeingdescribed i since each element represents the probability that a given star, i, ine.g.Teriacaet.al(1999) forfittingradiativetransfermodelsto wasactuallyformedwithmetallicityZ,attimeT withanymass, solaratmospheredata,Sevensteretal.(1999)infittingparameters and that itwas observed witha distance modulus of D, and red- ofGalacticstructuremodelstoobservations,Metcalfe(2003),for deningofR.Thatis,inthisBayesianapproach,wetreatthestellar thefittingofwhitedwarfastroseismologyparametersorGeorgiev massmasanuisanceparameterwhichwemarginalizeover. &Hernandez(2005)intheproblemofinferringoptimalwindpa- The probability that an entire observed CMD with N stars rametersfromobservedspectrallineprofiles,amongmanyothers. ⋆ arosefromaparticularmodel,i.e.,fromaparticularchoiceofpa- rameters(T,Z,D,R),willnowbegivenby: N⋆ 3 TESTINGTHEMETHOD L(T,Z,D,R) = G (T,Z,D,R) . (7) i InthissectionwetestthemethoddescribedinSection§2,through Yi=1 theinversionofaseriesofsyntheticCMDs.Asinthiscasethepoint In this way, we have constructed an optimal merit function inparameterspacefromwhichaparticularCMDwassimulatedis which can be evaluated at any point within the relevant four di- known,wecanoptimallyassestheperformanceofthemethod. mensionalparameterspace(T,Z,D,R),givenanobservedCMD. Insimulatinganobserved CMDthefirststepistoobtainan Itisimportanttoremarkthatthismeritfunctionusesallinforma- adequateisochronelibrary.Differentgroupshavesucceededinpro- tionavailableintheCMD densely. Nobinning or averagingover ducingstate-of-the-artstellarevolutionarycodesusingmostly,but discreteregionsisnecessary,andnoaspectsofthedistributionof not all the time, the same input physics. Since systematic errors stars on the CMD are discarded. Also, all the rich stellar evolu- will be produced by the choice of the set of isochrones, we use tionaryphysicsisincludedinthecomparisonwiththemodels,as theresultsofthethreedifferentgroups(Bergbusch&VandenBerg theisochrones arenotbeing reducedtoadiscreteset ofnumbers 1997, VandenBerg et al. 2006, Demarque et al. 2004, Girardi et (e.g.thepositionoftheTO,RGBslope,etc.)orevencurvesonthe al.2002).Wehaveworkeddirectlywiththeoutputofstellarevo- CMD.Asweshallseeinsection§3,thefulluseofallfeaturesin lutionary codes to produce our own isochrone grid with a dense both data and models, allows aprecise estimation of the inferred grid including 180 time steps and 120 metallicity intervals. Each parameters. isochronecontainsapproximately300stellarmasses.Thetimeres- Following Bayes theorem, one would now want to identify olutionforagesofbetween4.5Gyrandtheupperlimitof18.0Gyr thatpointwhichmaximizesL,the4coordinateswhichmaximize isof0.2Gyr,withyoungeragesbeingsampledmoredensely.The theprobabilitythattheobservedCMDdidinfactarisefromapar- spacinginmetallicityislinearinthelogarithm,with0.03dexper ticularpointintheparameterspace,withthesetofphysicalcluster interval. Throughout the paper we shall identify metallicity with parameterswhichhavethehighestprobabilityofhavinggivenrise [Fe/H], when using theoretical isochrones, or comparing against totheobservedCMD. empirical inferences. The spacings of the isochrone grid will de- Severalmethodsexistforidentifyingtheglobalmaximumofa terminethemaximumresolutionofthemethod,independently of multidimensionalsurface.Moststandardmethodsrunintoconsid- whatapproachistakenatthefollowinglevelsoftheproblem.For erabledifficultiesincaseswherelocalmaximaexist,asourprob- thepurposes of presenting themethod, these gridsare more than lemturnsouttohave.Themostreliablewayofsolvingthisproblem appropriate. istoevaluateL throughoutadensegridinalloftheavailablepa- Itisimportanttonotethatthehighlynon-linearvariationsin rameterspace.Thishowever,ishighlytimeconsuming,andhence magnitudeandcolourwithmasswhichappearalongisochroneson itishighlydesirabletofindamoreefficientmethod. criticalregionsoftheCMDimpliesthatadirectinterpolationbe- Wehaveusedthegeneticalgorithmapproach,whereanumber tweentwoisochroneswillnotproducetheintermediaryone,butan of“agents”areplacedatrandompointswithinourparameterspace, averagecurvewhichbareslittleresemblancetotheoutputofastel- andthepositionofeachcodifiedintoabinarynumber,the“genes” larevolutionarycode.Inallcases,wehavelimitedtheisochronesto ofeachagent.Thenumberofbinarybitsusedforeachcoordinate belowtheheliumflash.Thisconditionrestrictstheinformationwe fixestheresolutionofthealgorithm,whichinthiscasecorresponds considerinourmethodtotheregionwheredisagreementbetween totheresolutionoftheisochronegridonthe(T,Z)plane,andto differentgroupsworkinginthefieldisataminimum. 0.01maginthe(D,R)plane.ThevalueofListhenevaluatedat Oncetheisochroneshavebeenestablished,anIMFischosen thepositionofeachagent,andtheresultisusedasafitnessfunc- todistributestarsamongstdifferentmasses.Thisfunctionprovesto tion.Asecondgenerationisthenconstructedby“mating”theorig- berelativelyunimportant,asthemassrangeofstarsoneisdealing inalagents,pairingthemandcombiningthe“genes”ofeachparent withissmallprovidedstarsareselectedfromonemagnitudeorso toproducetwo“offsprings”.Thefitnessfunctionisusedtoweight belowtheTOregionallthewaytothetipoftheRGB.Thisensures thematingprobability,suchthatthefitterindividualshaveagreater that the mass range probed by the observations is small. For ex- probabilityof“mating”.The“genes”oftheoffspringsareacombi- ample,inglobularclustersolderthan∼5Gyrthemassintervalis nationofthoseoftheirparents,andhenceasgenerationsproceed, around1M⊙andhenceinthisnarrowmassrangethedetailsofthe thepopulationgraduallymovesintoregionswherethefitnessfunc- IMFareirrelevant.Thedistributionofstarsalongtheisochroneis tionishigher,i.e.,intoregionsofhighL.Toavoidgettingtrapped amuchmoresensitivefunctionofthestellarevolutionarymodels, intolocalmaxima,aslight“mutationrate”isintroduced,through whichisinfactwhatdeterminesthatthemainsequenceishighly Robuststatisticalmeasures ofsinglestellarpopulations 5 13 13.5 14 14.5 -3 -2.5 0.05 0.1 0.1 -2.6 14.5 -2.8 0.08 14 -3 0.06 -3.2 13.5 -3.4 0.04 13 18.9 18.9 18.9 18.8 18.8 18.8 18.7 18.7 18.7 13 13.5 14 14.5 -3 -2.5 0.05 0.1 T(Gyr) log(Z) E(V-I) Figure1. (Left)SimulatedSingleStellarPopulationCMDhavinganageof13.9GyrandlogZ=−2.7.Thethick(black)curveshowstheinputisochrone, withtheoptimalfitisochronerecoveredbythemethodappearingasathin(red)curve.Dottedcurvesshowtheyoungestandoldestisochronesallowedbythe method,atthe1−σlevel,whichinfactspana1.0Gyrinterval.(Right) ThesixpanelsshowtheprojectionoftheerrorellipsoidresultingfromtheMonte CarlosimulationandinversionofaSSPwithage13.9GyrandmetallicitylogZ=−2.7,ontodifferentplanes.Thefilledcirclesshowinputparameters,and theemptyonestheaveragevaluesfortherecoveredparameters. populated,theredgiantbranchmuchmoresparselyso,andthatthe functionofthesimulatedCMDwithrespecttoanygivenpointon HRgapregionwillcontainveryfewstars.TheIMFweuseisthat our 4-Dparameter space. Asdiscussed insection §2,theseeking of Kroupa et al. (1993), although as mentioned above, any other oftheoptimalpointwillbecarriedoutthroughageneticalgorithm approximation to this function would yield the same results (see simulation, the workings of which, for this first example, we de- §4.1). scribebelow. HavinganisochronegridandanIMF,wecannowpickapoint The upper left panel of Figure 2 shows the evolution of the inour(T,Z,D,R)parameterspaceandplaceachosennumberof valueofthelikelihoodmeritfunctionof Equation7over thefirst starsintothemagnitude-colourplane.Forthefirstimplementation 100generationsofthegeneticsimulation.Thehorizontallinegives we have simulated an extreme example with close to 2000 stars thevalueofthissamefunction,evaluatedattheactualpointinour around point (13.9,−2.7,18.8,0.05), a single stellar population (T,Z,D,R)parameterspacewhichwasusedtoproducethesyn- of age 13.9 Gyr, metallicity −2.7 (that is, close to −1.0 in solar theticCMDbeinginverted.Thisfirstpanelshowsanincreasewith units,for asolar metallicityof logZ⊙ = −1.7), withadistance thegenerationnumberoftheoptimalvalueofthelikelihoodfunc- modulus of 18.8 magnitudes, and observed through a reddening tion, as the absolute best point found in all the simulation up to of 0.05 magnitudes. Next we model magnitude and colour errors a given generation is what is being plotted. This value increases as Gaussian with sigmas as appropriate for current HST or high veryrapidlyatfirst,astheinitiallyrandompointsbegintomigrate qualitylongintegrationground-based observations. Explicitlywe towardsregionsmorecloselyresemblingthesimulatedCMD,but used progress becomes increasingly slower. In fact, there is no defini- tivecriteriontoestablishwhenageneticalgorithmsimulationhas σ(L)=0.001×exp[(L+D−17.0)/2.25] finallyconverged,thishastobeinferredfromsimulationswithsyn- theticdataandrepeatedexperiments,asanapproximatenumberof σ(C)=0.001×exp[(L+D−17.0)/1.97] generations, suitableforaparticular problem, afterwhichnofur- whereListhemagnitude,intheV band,ofthetheoreticalstar,and therimprovementisachieved.Fortheproblembeingtreatedhere, C itsV −I colour.Atthispointwecannowproduceasynthetic wehavefoundthemethodstopsyieldinganyimprovementinthe CMD,andforthisfirsttestobtainthe2009pointsshowninFigure fitsin general well before 3500 generations. Wehave thus ended 1. A magnitude cut at V = 25 has been used, limiting analysis thegeneticsimulationsat3500generations.Thevalueofthelike- tostarsbrighter thanthiscutoff.Giventhehighly correlatedway lihoodfunctionevaluatedattheactualinputpointalwaysremains inwhich star populate the main sequence, together withgrowing abovetheonecorrespondingtotheoptimalonefoundbythesimu- and sometimes divergent errors towards higher magnitudes, it is lationforthisfirst100generationsshownhere. sufficienttorestrictanalysisto2magnitudesbelow the’turnoff’ The upper right panel of Figure 2 gives the evolution of the region.Inwhatfollowsweshallkeepthe25magnitudelowerlimit, optimaltimegridindex(TI)alongtheisochronegrid,foundupto although achanging magnitude cut asdescribed above yieldsthe acertainpoint.Inthiscase,theinputageof13.9Gyrcorresponds sameresults. toour timeindex 159 out of 180, over thisinitial100 generation Atthispoint,Equation7canbeusedtoobtainthelikelihood period the time index corresponding to the optimal model found 6 X. HernandezandD. Valls–Gabaud 0 20 40 60 80 1000 20 40 60 80 100 0 1000 2000 3000 0 1000 2000 3000 150 150 100 100 0 50 50 0 0 100 1 100 1 80 80 60 0 60 0 40 40 20 -1 20 -1 0 0 0 20 40 60 80 1000 20 40 60 80 100 0 1000 2000 3000 0 1000 2000 3000 Generation Generation Generation Generation Figure2. (Left) Thefourpanelsshow,inaclockwiseprogressionstartingattheupperleft,themaximumlikelihoodpointfoundbythemethod,theoptimal timeindex,theoptimaldistancemodulus,andtheoptimalmetallicityindex,allasfunctionsofgenerationnumberforthegeneticalgorithmsimulation,forthe first100generations.(Right) Sameastheleftpanels,butshowingthefull3500generationsofthegeneticalgorithmsimulation. fluctuates from an initial value of 120 to 178, from 6 to 18 Gyr, onetimegridintervalabove(0.2Gyr),11metallicitygridintervals andendsthisinitialperiod12gridpointsabovetheinputvalue,at below(0.4dex)andatadistancemodulusaround0.05magnitudes 16.9Gyr.Thebottomleftandrightpanelsshowthecorresponding largerthantheinputparameters. evolutionofthemetallicityindexandthedistancemodulus,again, Theaboveresultmakesitclearthatinferringstructuralparam- thehorizontallinegivestheinputparameters.Wecanseethatafter etersofstellarpopulations,eveninthesimplestcases,cannotbe 2generations theinitiallyrandom valueshaveapproached signif- attemptedwithoutafullconsiderationoftheprobabilisticnatureof icantly the input ones, and then show considerable variations of theproblem,andalso,cannotgiveerror-freeresults.However, it around 35 metallicity grid intervals (1.5 dex) and 0.8 mag in the ispossibletoevaluatetheintrinsicerrorsofthemethod,inconnec- distancemodulus. tiontoanyparticularimplementation,bytheMonteCarlomethod. Itisinterestingtore-plottheleftpanelof Figure2thistime Theexperiment isrepeated alargenumber of times,andthevar- overtheentire3500generationrange,thisisdoneintherightpanel ious answers analyzed to obtain mean inferred values with well ofFigure2wherewecanseethatsubstantialimprovementsinthe determineddispersionsandcorrelations. optimal likelihoodvaluefound arestilloccurring after1000 gen- This method naturally takes into consideration all internal erations.Astrikingfeatureseenintheupperleftpanelofthislast sources of error and dispersion inherent to the procedure being Figureisthatthegeneticalgorithmhasactuallyfoundanoptimal tested,andyieldsaccurateandreliableconfidenceintervalsonthe model which in fact yields a likelihood value above that of the inferences obtained. Figure1 (right) shows with filledcirclesthe input parameters. At around 1000 generations, theoptimal likeli- input parameters of the CMD of Figure 1 and with empty ones hoodfoundcrossesthehorizontallinegivingthelikelihoodvalue thecenterofthedistributionsoftherecoveredparametersafterthe ofEquation7oftheinputparameters,withrespecttothisparticu- wholeprocedureofconstructingasyntheticCMDandinvertingit larrealizationoftheCMDcorrespondingtothem.Thisapparently was repeated 20 times. The ellipses give projections of the error paradoxicalresultisinfactunavoidable,andhighlightsthestatisti- ellipsoidontothedifferentplanesbeingshown.Itcanbeseenthat calnatureoftheproblem.TheconstructionofaCMDfromapoint theonlysystematicwhichappearsinthiscasebeyondthe1σlevel inthesinglestellarpopulationparameterspacecannotbethought isan+0.03magnitudeoffsetintherecoveredvaluesoftheredden- ofasneitheradeterministicnorauniqueprocess.Evenbeforethe ingforthecluster.Allotherparametershavebeenrecoveredwith errorsassociatedwithprocuringtheobservationsenterthepicture, nosystematics,the1σerrorsforthis13.9Gyroldclusterbeing0.5 the process of sampling an IMF has already introduced a proba- Gyr in age, 0.38 dex in metallicity and 0.05 mag in the distance bilisticingredient intrinsictothecluster itself(e.g.Cervin˜oetal. modulus. 2002,Cervin˜o&Valls-Gabaud2003).Inthissense,obtainingasin- Theisochronecorresponding tothesolidcirclesisshownin glesimulatedCMDandusingittocomparewithanobservedone Figure1bythethicksolidcurve,whichpracticallyliesabovethe canonlybeatbestacrudefirstapproximationtotheinvertingofa thin(red)curveoftheisochronecorrespondingtotheemptycircles CMD.Inthisparticularcase,theconvolvingofthetheoreticalstars alongalltheCMD.Somedifferencesbetweenthetwoisochrones witherrorgaussianshasshiftedthepointsaroundinsuchawaythat are evident along the upper half of the red giant branch, where theisochrone(understoodasaseriesofstellarevolutionarymod- so few stars are expected, that none of the 2009 obtained in the els,notjustacurveonaCMD)whichhasthegreatestprobability CMD realization shown appear there. The dotted curves give the ofhavingyieldedtheCMDisnottheinputone,butonewhichis isochronescorrespondingtotheoldestandyoungestpointsonthe Robuststatisticalmeasures ofsinglestellarpopulations 7 11 12 -3.4 -3.2 -3 0.04 0.06 -3 0.07 12.5 -3.1 0.06 12 -3.2 0.05 11.5 -3.3 11 0.04 -3.4 10.5 -3.5 0.03 18.85 18.85 18.85 18.8 18.8 18.8 18.75 18.75 18.75 18.7 18.7 18.7 11 12 -3.4 -3.2 -3 0.04 0.06 T(Gyr) log(Z) E(V-I) Figure3. (Left)SimulatedSingleStellarPopulationCMDhavinganageof10.9GyrandlogZ=−3.05.Thethick(black)curveshowstheinputisochrone, withtheoptimalfitisochronerecoveredbythemethodappearingasathin(red)curve.Dottedcurvesshowtheyoungestandoldestisochronesallowedbythe method,atthe1σlevel,whichinfactspana1.48Gyrinterval.(Right) ThesixpanelsshowtheprojectionoftheerrorellipsoidresultingfromtheMonte Carlosimulationandinversionofasinglestellarpopulationwithage10.9GyrandmetallicitylogZ =−3.05,ontodifferentplanes.Thefilledcirclesshow inputparameters,andtheemptyonestheaveragevaluesfortherecoveredparameters. ellipseintheage-metallicityplane, whichareseentobracket the anextensiveregionofthe(T,Z)plane,merelyarelationbetween HR-gapandRGBregionsoftheCMDshown. thepossibleageandmetallicity,withnowayofrestrictingthean- The second example was constructed from point swertoanarrowerregion.Theabovehighlightsproblemsinherent (10.9,−3.05,18.8,0.05) in our parameter space, taken to to methods where information is being discarded, to which must represent atypical old SingleStellarPopulation (SSP).Intesting beadded ambiguitiesassociated tothedefinitionof the’turnoff’ themethodforsystematicsrelatedtoeffectsnotexplicitlyincluded point.Giventhecurrenthighaccuracyoftheobservationsandthe inthemodel,comparisonswillbemadeatthispointinparameter theoreticalisochrones,inspectionofsimulatedandobservedCMDs space,insection§4. makesitclearthatthereisinfactnosuchthingasaturnoff’point’, Figure3showstheCMDwhichresultsfromconvolving the butratheradiffuse,hazyregionwhichispronetosamplingfluctu- modeledstarswiththesamesimulatederrorsthanlasttime.Also ationsandthepresence,orotherwise,ofafewoddstars. shownaretheisochronefromwhichthesimulatedstarswerecon- Other correlations are evident in Figures1 and 3, for exam- structed,thick(black)curve,andtheoptimalonefoundbythege- pleaclearnegativecorrelationbetweentheinferredreddeningand neticalgorithm,thincontinuouscurve.Thedottedcurvesgivethe metallicity,alsoagenericfeatureofanystellarpopulationinversion oldest and youngest isochrones consistent with the Monte Carlo method,inherenttothestructureoftheisochrones.Itisinteresting simulationontheinvertingprocedureata1σlevel,thistimespan- tonote inthelower 3panels of Figures1 and 3that the inferred ning1.2Gyr.AnalogoustoFigure1,Figure3(right)givesthepro- distancetotheclustershowsnostrongcorrelationswithanyofthe jectionoftheerrorellipsoidfortheinferredparametersusingthe other3parameters,contrarytowhathappenswhentheisochrones MonteCarlomethod,projectedonto6differentplanes.Oneagain are reduced to a set of numbers such as location of the turn off seesthattherearenosystematicsbeyondthe1σlevel,fromwhich point,slopeoftheRGBetc. weconcludethatthemethodaccuratelyrecoverstheinputparam- Forathirdexample, intryingtocover points onour param- etersofthecluster,andyieldsmeaningfulconfidenceintervalsfor eterspacerepresentativeofoldSSPs,wesimulatedanold,metal theanswersupplied. poorsuchsystem.Startingfrompoint(13.9,−4.0,18.8,0.05)we LookingattheupperleftpanelofFigure3(right)weclearly construct a series of CMDs, one of which is shown in Figure 4, see the actual intrinsic age-metallicity degeneracy in the way the withcurvesanalogoustowhatappearsinFigures2and3.Itisim- 1σ ellipse in the (T,Z) plane slants from the upper left to the pressivetoseehownearlyindistinguishabletheshapesoftheinput lowerright.Optimalfitswithlargeagestendtocorrespondtolower andmeanrecoveredisochronesareontheCMD,togetherwiththe metallicities,andvice-versa.However,weseethathavingincluded isochronescorrespondingtotheoldestandyoungestisochroneal- alltheinformationavailablebothinthesimulatedCMDandinthe lowedbytheMonteCarlosimulationata1σ level.All4ofthese theoreticalisochrones minimizesthisdegeneracy andoneobtains curves appear practically on top of each other in this case, with closedconfidenceintervals.IftheCMDisreducedto,saytwonum- veryminordifferencesonlyapparentatthecurvaturebetweenthe bers,correspondingtothelocationofthe’turnoff’,whencompar- HRgapregionandtheRGB. ingtoasimilarlyrestrictiveview ofwhat thestellarevolutionary Theaboveisparticularlysurprisingwhenconsideringthatthe modelsencode,oneendsupwithaconfidenceregionwhichspans isochrones shown span almost a 1.5 Gyr-long time interval. Of 8 X. HernandezandD. Valls–Gabaud 12.5 1313.5 14 -4 -3.5 0.04 0.06 -3.2 0.07 14 -3.4 0.06 13.5 -3.6 0.05 -3.8 13 0.04 -4 12.5 -4.2 0.03 18.85 18.85 18.85 18.8 18.8 18.8 18.75 18.75 18.75 18.7 18.7 18.7 12.5 1313.5 14 -4 -3.5 0.04 0.06 T(Gyr) log(Z) E(V-I) Figure4. (Left) SimulatedSingleStellarPopulation(SSP)CMDhavinganageof13.9GyrandlogZ = −4.0.Thethick(black)curveshowstheinput isochrone,withtheoptimalfitisochronerecoveredbythemethodappearingasathin(red)curve.Dottedcurvesshowtheyoungestandoldestisochrones allowedbythemethod,atthe1σlevel,whichinfactspana1.44Gyrinterval.(Right) Thesixpanelsshowtheprojectionoftheerrorellipsoidresulting fromtheMonteCarlosimulationandinversionofaSSPwithage13.9GyrandmetallicitylogZ=−4.0,ontodifferentplanes.Thefilledcirclesshowinput parameters,andtheemptyonestheaveragevaluesfortherecoveredparameters. course, the other parameters besides the age have been adjusted stellar populations the mean recovered parameters appear within tomaximizethefitwhenshiftingtheage,inaccordance withthe onegridintervalinmetallicityoftheinputparameters,thetheoret- correlations shown inFigure 4, theoldest isochrone has thelow- icalmaximumresolutionoftheimplementationhasbeenrealized estmetallicitytogetherwithasomewhataboveaveragereddening attheseyoungages,evenafterhavingconsideredrealisticerrorsin correction. Thispoint again showsthat theisochrones havetobe magnitudesandcolours.Theageresolutionisstillabovethatofthe treatedascollectionsoffullstellarevolutionmodels,notreduced isochrones,butrobust1σerrorsofaround0.5Gyrareencouraging. toafewscalarshapeparameters,noteventosimplyshapesonthe Weaddthattheprecisionofthemethodinrecoveringdistance CMD. Havingused thefull shape of theisochrones continuously modulusandreddeningparametersissufficienttomakeitauseful throughoutthefullCMD,togetherwithinformationregardingthe toolinthedeterminationofdistancestosinglestellarpopulations, durationofdifferentstellarphasesinconstructingthemeritfunc- witherrorssometimesasgoodasafewhundredthsofamagnitude, tionofEquation7hasallowedamuchfinerdiscriminationwithin as seen in Figure 5. Again, the correlations persist, although the our(T,Z,D,R)parameterspace,muchbeyondwhatconsidering details of these correlations change from example to example in onlytheshapeoftheisochroneswouldhaveallowed.Changingthe waysthatreflectthedetailsoftheisochronesaroundeachregion, inputparametersoftheisochroneevenata2-3sigmalevel,would and which are dependent on both the magnitude of the assumed result in curves compatible with the shape of the simulated stel- observationalerrorsandtheactualnumbersofstarspresentinthe lardistribution,butwhichareruledoutduetohavingincludedall simulatedCMDs. availableinformationbothintheCMDandthestellarmodels. With simulated errors tending to zero the inferred parame- Again,nosystematicoffsetsbetweentheinputvaluesandthe ters would tend to the input ones, to within the resolution of the meanrecoveredonesappearsbeyondthe1σ level,ascanbeseen isochronegridused,always.Also,ifthestatisticalcomparisonbe- from Figure 4. In this same Figure we see the same correlations tween data and models is robust, the systematics and confidence evidentinthepreviousanalogousFigures,withtheconfidencein- intervalsshouldtendtozeroasthenumberofdatapointstendsto tervals,particularlyinageandmetallicityhavinggrownconsider- infinity,whichofcourseisneverthecase. ablyincomparisontoFigure3.Thisisobviouswhenoneconsid- ershow consecutive isochrones equally spaced intimewillshow progressivelysmallerdifferencesastheageofastellarpopulation increases.Havinglefttheassumedobservationalerrorsandstellar 4 SYSTEMATICS numbersconstant,theuncertaintiesintheinferredparametershave growningoingtoanold,metalpoorpopulation. Havingtestedsuccessfullythemethodacrossrepresentativepoints Forthefourthandfifthexampleswecompleteoursamplingof inthe(T,Z,D,R)space,wenowturntotheproblemofestimating SSPsparameterspacewithtwoclustersat(6.9,−2.0,18.8,0.05) howrobusttheinferencesofourmethodwillbeinmorerealistic and(6.9,−3.37,18.8,0.05).Figures5and6arecompletelyanalo- cases, where physical ingredients not explicitlyconsidered in the goustothecorrespondingpreviousfiguresandessentiallyillustrate statistical modeling behind Equation 7, and present in a real ap- the same points mentioned before. For these younger simulated plication, will complicate matters, and might result in systematic Robuststatisticalmeasures ofsinglestellarpopulations 9 6.5 7 -2.1 -2 -1.9 0.02 0.04 0.06 -1.9 0.07 7.4 0.06 7.2 -1.95 0.05 7 -2 0.04 6.8 -2.05 0.03 6.6 -2.1 0.02 6.4 18.85 18.85 18.85 18.8 18.8 18.8 18.75 18.75 18.75 18.7 18.7 18.7 6.5 7 -2.1 -2 -1.9 0.02 0.04 0.06 T(Gyr) log(Z) E(V-I) Figure5. (Left)SimulatedSingleStellarPopulationCMDhavinganageof6.9GyrandlogZ=−2.05.Thethick(black)curveshowstheinputisochrone, withtheoptimalfitisochronerecoveredbythemethodappearingasathin(red)curve.Dottedcurvesshowtheyoungestandoldestisochronesallowedbythe method,atthe1σlevel,whichinfactspana1.0Gyrinterval.(Right)ThesixpanelsshowtheprojectionoftheerrorellipsoidresultingfromtheMonteCarlo simulationandinversionofaSSPwithage6.9GyrandmetallicitylogZ =−2.05,ontodifferentplanes.Thefilledcirclesshowinputparameters,andthe emptyonestheaveragevaluesfortherecoveredparameters. offsetsbetweentheactualphysicalparametersofastellarpopula- oftheMonteCarloprocedurecanbeseeninFigure7,whichfrom tionandourinferences. the previous discussions would not have been expected to show Inthissectionweexploresuchcasesbyconstructingsynthetic any substantial difference to Figure 3, as is indeed the case. By CMDsunderassumptionsdifferenttotheonesthemethodusesin comparingwithFigure3wenotenosubstantialdifferences,allin- theinversionprocedure,andcomparehowserioustheseeffectsare ferredparametersarewellwithinthe1σerrorestimates,withvery inalteringourinferences.The5effectsconsideredwillbe:(1)Er- lowuncertaintiesofaround0.5Gyrinage,0.2dexinmetallicity, rorsintheassumedIMF,(2) thepresenceofunresolved binaries, 0.01and0.05maginreddeninganddistancemodulus,respectively. (3)theeffectsofreducingthenumbersofstarspresentintheob- Theisochronescorrespondingtotheinput,inferred,andoldestand servedCMD,(4)systematicsassociatedwiththedifferentsetsof youngestvaluesrecovered(ata1σlevel),practicallyoverlapover stellartracksusedinconstructingtheisochronegrids,and(5)the theentireregionoverwhichsignificantnumbersofstarsarefound. presenceofcontaminatingstarsintheobservedCMDs. Weseethatthetheoreticalexpectationsoftheprevioussectionsare borne out, and our results are in fact highly robust to even large scalefeaturesoftheIMF.Thisisreassuringfromthepointofview 4.1 EffectsoftheIMF ofinferringages,metallicities,distancesandreddeningcorrections Figure7givesaCMDresultingfromthesamepointinparameter ofresolvedstellarpopulations,butdishearteningfromthatofinfer- spaceasFigure3,(10.9,−3.05,18.8,0.05),butcreatedthistime ringtheIMFofobservedstellarclustersthroughmethodssimilar usingasubstantiallydifferentIMF,heavilyweightedtowardsmas- towhathasbeendevelopedhere. sive stars, increasing the slope with respect to the Kroupa et al. (1993)IMFsuchthatthetypicalstellarmassincreasesbyafactor 4.2 Effectsofunresolvedbinarystars of3.Obtainingthesamenumberofpointsthusrequiresturninga much largertotal massintostars, butunder theassumption of an Thesecondtestwasperformedagainusingthesameisochroneli- equalnumberofstarsasinFigure3,theresultsarehighlysimilar. brary, and the input point (10.9,−3.05,18.8,0.05) of Figure 3, Theprecisemanner inwhichthedensityofstarsvariesalongthe butthistimetooneintwoofthesimulatedstarsweaddedanun- mainsequenceregionissomewhatdifferentfromthecaseofFig- resolvedcompanion,chosenfromthesameIMF,i.e.,thesynthetic ure3,butgiventhehighlycorrelatedmannerinwhichmagnitudes CMDwasproducedassuminga50%unresolvedbinarycontribu- andcoloursscalealongthisregion,theinformationcontentofthe tion.Theinversionprocedurewashoweverexactlythesameasin CMDisonlymarginallyaltered.Thehighlydeterminant sections thepreviouscases,withEquation7remainingunchanged,abinary beyond the main sequence span such a small mass range that all fractionof0%wasassumedinrecoveringtheinferredparameters. ofthesefeaturesarevirtuallyleftunchangedbyeventhestrongest OneoftheresultingCMDswhichwasusedintheMonteCarlo modificationsintheIMF. procedure for the inversion is shown in Figure 8, together with Theinversionprocedurewasrepeated20times,butassuming isochronesasinthepreviousFigures.Thepresenceof50%bina- thesameIMF asinFigure3, whichinthiscasenolonger corre- riesisparticularlyconspicuousalongthemainsequence,wherethe spondedtotheIMFusedtocreatethesyntheticCMDs.Theresults distributionofpointsisclearlysmearedtowardsreddercolours,ev- 10 X. HernandezandD. Valls–Gabaud 6.5 7 7.5 -3.6 -3.4 -3.2 0.02 0.04 0.06 -3.2 0.07 0.06 7.5 -3.3 0.05 -3.4 0.04 7 -3.5 0.03 6.5 -3.6 0.02 18.85 18.85 18.85 18.8 18.8 18.8 18.75 18.75 18.75 18.7 18.7 18.7 6.5 7 7.5 -3.6 -3.4 -3.2 0.02 0.04 0.06 T(Gyr) log(Z) E(V-I) Figure6. (Left)SimulatedSingleStellarPopulationCMDhavinganageof6.9GyrandlogZ=−3.37.Thethick(black)curveshowstheinputisochrone, withtheoptimalfitisochronerecoveredbythemethodappearingasathin(red)curve.Dottedcurvesshowtheyoungestandoldestisochronesallowedbythe method,ata1σlevel,whichinfactspana1.0Gyrinterval.(Right) ThesixpanelsshowtheprojectionoftheerrorellipsoidresultingfromtheMonteCarlo simulationandinversionofaSSPwithage6.9GyrandmetallicitylogZ =−3.37,ontodifferentplanes.Thefilledcirclesshowinputparameters,andthe emptyonestheaveragevaluesfortherecoveredparameters. identwhencomparing,forexample,withFigure7.Afewbinaries ever,havingweightedalltheCMDequally,themuchlargermain canalsobeseenaroundthecriticalturnoffregion,butthesehave sequence population, and the phases beyond the turn off, where hadlittleeffect.Giventhelargedifferenceinluminositybetween errorsare much smaller, anchor to alarge extent the fit against a aRGBstarandanymainsequenceone(themostlikelysecondary smallnumber of bluestragglersorbinariesveryclosetotheturn tobeaddedtoabinary),binarypollutionalongtheRGBproduces off.Morethan2localerrorsigmaawayfromtheturnoff,youcan absolutelynoeffects. fillinalmostanynumber ofbluestragglers,byconstructiontheir Bylookingatthebestfitinferredisochronesatthebaseofthe effectwillbenegligible,seeEq.4. main sequence, it can be seen that these have all shifted towards Inthe context of invertingresolved stellar populations, abi- theright,inresponsetotheweightingofthedistributionofpoints narydoesnotnecessarilyimplyaphysicalgravitationalassociation towards this direction. By looking at Figure 8 one can see that betweentwostars,butmerelythatthelightoftwoindividualstars thisshifttowardstherighthasbeenachievedoptimallybythege- has appeared in thedata as coming from asingle point. The two neticalgorithmnotbyalteringthereddeningcorrection,butrather starshenceshowasasingleonehavingthetotalluminosityofthe through an offset in the distance modulus. Whilst inferred age, sumforthetwostars,andaneffectivetemperaturebeingtheenergy metallicityandreddeningparametershavebeenobtainedwithinthe weightedsumofthetemperaturesofthetwostars,asperaStefan- 1σ errorellipses,theinferreddistancemodulusisoffatarounda Boltzmannlaw.Therefore,especiallyifthinkingofdensesystems 2σlevel,whichhowevercorrespondsonlyto0.15magnitudes.The suchasglobularclusterswherecrowdingeffectscanbedominant, clearest correlation between theinferredparameters isstillinthe theadoptionofthesameIMFforthesecondarycomponentofthe age-metallicityplane,andremainsinthesamesenseasexpected. binaryasfortheprimaryoneisjustified. Otherthantheslightoffsetininferreddistancemodulus,the onlyothereffectofhavingintroducedarelativelyhighbinarypopu- 4.3 Effectsofdifferentsetsofisochrones lationhasbeenthebroadeningoftheerrors.Theconfidenceregion isthistime2.5Gyracross,comparedto1.4GyrforFigure3.Again, Wenowturntoapossiblyimportantsystematic,relatedtotheva- theisochronesinFigure8areremarkablyclosetoeachother,but lidityof the underlying hypothesis that a single real star from an althoughregionsbeyondtheturnoffhavenotbeenmuchaffected observed CMD doesinfact behaveand evolveasthestellarevo- bytheinclusionofthebinaries,thefactthatthemainsequencehas lutionarycodeoneisusingtoconstructanisochronegridassumes shiftedoutofcorrespondencewiththeseotherregionshasresulted itto.Figure9givestheCMDproducedagainfromthesamepoint inpoorerfits,andalthoughnosystematicoffsetsinage,metallic- (10.9,−3.05,18.8,0.05) in parameter space, but using this time ityor reddening correction have appeared, theerror ellipseshave thePadovastellarevolutionarymodels(Girardietal.2002),whilst certainlyincreasedinsize. inallpreviousexamples,theYaleisochroneswhereused(Demar- Theparticularcaseofbluestragglershasnotbeentreated,but queetal.2004).Thedistributionofstarsonthemagnitude-colour a good approximation can be obtained from the binary contami- planeismuchthesameasinFigure3,andnosignificantdifferences nation example included. Binaries and blue stragglers can popu- canbedetected. latetheregionclosetotheturnoff,andresultinpoorerfits.How- AnumberofsuchCMDswheretheninvertedusingtheYale

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.