Table Of Content1122222277__99778899881111223344887733__ttpp..iinndddd 11 66//1100//2211 1100::0077 AAMM
Other World Scientific Titles by the Author
Copositive and Completely Positive Matrices
ISBN: 978-981-120-434-0
YYuummeenngg -- 1122222277 -- AA PPrroobblleemm BBaasseedd JJoouurrnneeyy..iinndddd 11 2222//99//22002211 1100::3344::3333 aamm
1122222277__99778899881111223344887733__ttpp..iinndddd 22 66//1100//2211 1100::0077 AAMM
Published by
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.
A PROBLEM BASED JOURNEY FROM ELEMENTARY NUMBER THEORY
TO AN INTRODUCTION TO MATRIX THEORY
The President Problems
Copyright © 2022 by World Scientific Publishing Co. Pte. Ltd.
All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or
mechanical, including photocopying, recording or any information storage and retrieval system now known or to
be invented, without written permission from the publisher.
For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center,
Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from
the publisher.
ISBN 978-981-123-487-3 (hardcover)
ISBN 978-981-123-488-0 (ebook for institutions)
ISBN 978-981-123-489-7 (ebook for individuals)
For any available supplementary material, please visit
https://www.worldscientific.com/worldscibooks/10.1142/12227#t=suppl
Desk Editor: Yumeng Liu
Typeset by Stallion Press
Email: enquiries@stallionpress.com
Printed in Singapore
YYuummeenngg -- 1122222277 -- AA PPrroobblleemm BBaasseedd JJoouurrnneeyy..iinndddd 22 2222//99//22002211 1100::3344::3333 aamm
October6,2021 10:25 AProblemBasedJourneyfrom...-9.61inx6.69in b4448-Main pagev
To my grandchildren who enjoy playing with problems
January19,2018 9:17 ws-book961x669 BeyondtheTriangle: BrownianMotion...PlanckEquation-10734 HKU˙book pagevi
TTTThhhhiiiissss ppppaaaaggggeeee iiiinnnntttteeeennnnttttiiiioooonnnnaaaallllllllyyyy lllleeeefffftttt bbbbllllaaaannnnkkkk
October6,2021 10:25 AProblemBasedJourneyfrom...-9.61inx6.69in b4448-Main pagevii
Contents
Introduction xi
Introduction to the Course . . . . . . . . . . . . . . . . . . . . . . . . xi
1 Algebraic Structures 1
1.1 Groups, Fields and Rings . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5.1 Prestigious prizes in mathematics . . . . . . . . . . . . . . 7
2 The Natural Numbers 11
2.1 What is Induction? . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Mathematical Induction . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Easy to State Open Problems . . . . . . . . . . . . . . . . . . . . 16
2.4 Tiling and Geometry Problems . . . . . . . . . . . . . . . . . . . 17
2.5 Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7.1 Fermat’s Last Theorem . . . . . . . . . . . . . . . . . . . 26
2.7.2 The Catalan Conjecture . . . . . . . . . . . . . . . . . . . 26
2.7.3 Euler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.7.4 Euclid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.7.5 Gauss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.7.6 Newton and Leibniz . . . . . . . . . . . . . . . . . . . . . 28
2.7.7 Collatz and Tau . . . . . . . . . . . . . . . . . . . . . . . 30
2.7.8 Sylvester–Gallai theorem . . . . . . . . . . . . . . . . . . 30
3 The Integers 31
3.1 The Greatest Common Divisor . . . . . . . . . . . . . . . . . . . 31
3.2 Congruence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
vii
October6,2021 10:25 AProblemBasedJourneyfrom...-9.61inx6.69in b4448-Main pageviii
viii THE PRESIDENT PROBLEMS
4 The Real Numbers 41
4.1 Sequences and Rational Numbers . . . . . . . . . . . . . . . . . . 41
4.2 Irrational Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5 Introduction to Set Theory 49
5.1 Countable Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Uncountable Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.5.1 Cantor, Fraenkel, Russel and Zermelo . . . . . . . . . . . 59
5.5.2 Hilbert’s 23 Problems . . . . . . . . . . . . . . . . . . . . 59
5.5.3 Gödel and Cohen . . . . . . . . . . . . . . . . . . . . . . . 61
5.5.4 Bernstein and Schröder . . . . . . . . . . . . . . . . . . . 61
6 The Pigeonhole Principle and the Base 2 Number System 63
6.1 The Pigeonhole Principle . . . . . . . . . . . . . . . . . . . . . . 63
6.2 The Base 2 Number System . . . . . . . . . . . . . . . . . . . . . 63
6.3 Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.4 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.5.1 Dirichlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.5.2 Ask Marilyn . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.5.3 The Erdős–Szekeres Theorem . . . . . . . . . . . . . . . . 68
7 Introduction to Group Theory 71
7.1 Subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.2 Lagrange’s, Euler’s and Fermat’s Theorems . . . . . . . . . . . . 73
7.3 The RSA Public Key Cybersystem . . . . . . . . . . . . . . . . . 76
7.4 Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.5 Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.6 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
8 Introduction to Matrix Theory 87
8.1 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.2 Graphs and Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.3 Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.4 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
9 Fibonacci Numbers, Determinants and Eigenvalues 109
9.1 The Fibonacci Sequence . . . . . . . . . . . . . . . . . . . . . . . 109
9.2 Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
9.3 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . 117
October6,2021 10:25 AProblemBasedJourneyfrom...-9.61inx6.69in b4448-Main pageix
CONTENTS ix
9.4 The Zeckendorf Representation of the Natural Numbers . . . . . 121
9.5 Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
9.6 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
9.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
9.7.1 Fibonacci . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
9.7.2 The golden ratio . . . . . . . . . . . . . . . . . . . . . . . 130
9.7.3 Cayley and Hamilton. . . . . . . . . . . . . . . . . . . . . 131
9.7.4 The Friendship Theorem. . . . . . . . . . . . . . . . . . . 131
10 The Mathematics Behind Google’s Page Rank
and a Game of Numbers 133
10.1 Page Rank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
10.2 Back to the Numbers on the Pentagon Problem . . . . . . . . . . 140
10.3 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
10.3.1 Perron and Frobenius . . . . . . . . . . . . . . . . . . . . 141
10.3.2 Brin and Page . . . . . . . . . . . . . . . . . . . . . . . . 141
10.3.3 Alon, Peres, Mozes and Eriksson . . . . . . . . . . . . . . 141
Bibliography 145
Index 147