ebook img

A Primer in Combinatorics PDF

344 Pages·2021·2.68 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Primer in Combinatorics

AlexanderKheyfits APrimerinCombinatorics Also of Interest AlgebraicGraphTheory Morphisms,MonoidsandMatrices UlrichKnauer,KoljaKnauer,2019 ISBN978-3-11-061612-5,e-ISBN(PDF)978-3-11-061736-8, e-ISBN(EPUB)978-3-11-061628-6 GeometryandDiscreteMathematics ASelectionofHighlights BenjaminFine,AnthonyGaglione,AnjaMoldenhauer,Gerhard Rosenberger,DennisSpellman,2018 ISBN978-3-11-052145-0,e-ISBN(PDF)978-3-11-052150-4, e-ISBN(EPUB)978-3-11-052153-5 AlgebraicCombinatorics EiichiBannai,EtsukoBannai,TatsuroIto,RieTanaka,2021 ISBN978-3-11-062763-3,e-ISBN(PDF)978-3-11-063025-1, e-ISBN(EPUB)978-3-11-062773-2 CombinatoricsandFiniteFields DifferenceSets,Polynomials,PseudorandomnessandApplications EditedbyKai-UweSchmidt,ArneWinterhof,2019 ISBN978-3-11-064179-0,e-ISBN(PDF)978-3-11-041714-2, e-ISBN(EPUB)978-3-11-041719-7 Alexander Kheyfits A Primer in Combinatorics | 2nd edition MathematicsSubjectClassification2020 Primary:05-01;Secondary:97K,91C Author AlexanderKheyfits USA [email protected] ISBN978-3-11-075117-8 e-ISBN(PDF)978-3-11-075118-5 e-ISBN(EPUB)978-3-11-075124-6 LibraryofCongressControlNumber:2021940401 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2021WalterdeGruyterGmbH,Berlin/Boston Typesetting:VTeXUAB,Lithuania Printingandbinding:CPIbooksGmbH,Leck www.degruyter.com Preface to the second edition Twonewsectionswereaddedtothisedition.Section2.6,“Graphcoloring”,coversthat subjectinsomedetailand,inparticular,expoundsthefamousfourcolorproblem.Its current solution requires an essential computer time. We avoid any use of comput- ers by limiting to the five colors variant, which is done in detail. Another new sec- tion,Chapter6,“SecondarystructuresoftheRNA”,showshowmodernapplications ofgraphtheoryleadtonewclassesofgraphs.Wehavealsorefreshedproblemsand exercisestomanysections. Acknowledgment ThiseditionwasmadepossibleduetomanyprofessionaleffortsofStevenElliot,Ute Skambraks,VilmaVaičeliūnienėandtheentirestaffofDeGruyter,towhomtheauthor isverythankful. https://doi.org/10.1515/9783110751185-201 Preface to the first edition Combinatorialanalysisorcombinatorics,forshort,dealswithenumerativeproblems whereonemustanswerthequestion“Howmany?”or“Inhowmanyways?”Other problemsareconcernedwiththeexistenceofcertaincombinatorialobjectssubjectto variousconstraints.Thesekindsofproblemsareconsideredinthisbook. Combinatorialproblems,methodsandgraphicalmodelsareabundantinmany areasrangingfromengineeringandfinancialsciencetohumanitariandisciplineslike sociology,psychology,medicineandsocialsciences,nottomentionmathematicsand computerscience.Aspartsofdiscretemathematics,combinatoricsandgraphtheory havebecomeindispensablepartsofintroductoryandadvancedmathematicaltrain- ingforeveryonedealingnotonlywithquantitativebutalsowithqualitativedata. Moreover, combinatorics and graph theory have a remarkable and uncommon feature—tobeginitsstudy,oneneedsnobackgroundbutelementaryalgebraandcom- monsense.Evensimplecombinatorialproblemsoftenleadtointeresting,sometimes difficultquestionsandallowaninstructortointroducevariousimportantmathemat- icalideasandconceptsandtoshowthenatureofmathematicalreasoningandproof. Thesequalitiesmakecombinatoricsandgraphtheoryanexcellentchoiceforanin- troductorymathematicalclassforstudentsofanyage,levelandmajor. Thisisatextforaone-semestercourseincombinatoricswithelementsofgraph theory.Itcanbeusedintwomodes.Thefirstthreechapterscoveranintroductoryma- terialandcanbe(andhaveactuallybeen)usedforanundergraduateclassincombi- natoricsand/ordiscretemathematics,aswellasforaproblem-solvingseminaraimed atundergraduateandevenmotivatedhigh-schoolstudents. Chapters4and5areofmoreadvancedlevelandthewholebookincludesenough materialforanentry-levelgraduatecourseincombinatorics.Forthemathematically inclinedreader,thematerialhasbeendevelopedsystematicallyandincludesallthe proofs.Afterthisbook,thereadercanstudymoreadvancedcourses,e.g.[1,9,10,22, 51].Atthesametime,thereaderwhoisprimarilyinterestedinapplyingcombinatorial methodscanskip(mostof)theproofsandconcentrateonproblemsandmethodsof theirsolution. In Chapter 1 we introduce basic combinatorial concepts, such as the sum and productrules,combinations,permutations,andarrangementswithandwithoutrep- etition.Variousparticularelementarymethodsofsolvingcombinatorialproblemsare alsoconsideredthroughoutthebook,suchas,forinstance,thetrajectorymethodin Section1.4orFerrersdiagramsinSection4.4.InSection1.6weapplythemethodsof Sections1.1–1.5todeveloptheelementaryprobabilitytheoryforrandomexperiments withfinitesamplespaces.Ourgoalinthissectionisnottogiveasystematicexpo- sitionofprobabilitytheory,butrathertoshowsomemeaningfulapplicationsofthe combinatorialmethodsdevelopedearlier. Chapter2containsanintroductiontographtheory.Aftersettingupthebasicvo- cabularyinSections2.1–2.2,inthenextthreesectionswestudypropertiesoftrees, https://doi.org/10.1515/9783110751185-202 VIII | Prefacetothefirstedition Eulerianandplanargraphs,andsomeproblemsofgraphcoloringandgraphicalenu- meration.ManyothergraphtheoryproblemsappearinChapters3–5.Asanapplica- tionofthemethodsdevelopedinChapters1–2,inChapter3wegiveanelementaryin- troductiontohierarchicalclusteringalgorithms.Thistopichaslikelyneverappeared intextbooksbefore. Chapter4isdevotedtomoreadvancedmethodsofenumerativecombinatorics. Sections 4.1–4.2 cover inversion formulas, including the Möbius inversion, and the PrincipleofInclusion–Exclusion.Themethodofgeneratingfunctionsisdeveloped inSection4.3.Generatingfunctionsareintroducedasanalyticalobjects,thesumsof convergingpowerseries.InSection4.4weconsiderseveralapplicationsofthemethod ofgeneratingfunctions,inparticularpartitionsandcompositionsofintegernumbers andlinearrecurrencerelations(differenceequations)withconstantcoefficients.The Pólya–RedfieldenumerationtheoryisconsideredinSection4.5. Thelastchapterofthebookisconcernedwithcombinatorialexistenceproblems. TheRamseytheoremanditsapplicationsareconsideredinSection5.1.TheDirich- let (pigeonhole) principle follows immediately. Section 5.2 treats Hall’s theorem on systemsofdistinctrepresentatives(themarriageproblem)andsomeofitsequivalent statements, namely, König’s theorem on zero-one matrices and Dilworth’s theorem onchainsinpartiallyorderedsets.Anexampleofanextremalcombinatorialproblem (theassignmentproblem)isalsoconsideredhere. Section5.3containsanintroductiontothetheoryofbalancedblockdesigns.We consideronlyrecursivemethodsofconstructionofblockdesignssincedeepalgebraic resultsarebeyondthescopeofthisbook.Finally,Section5.4isdevotedtothesystems oftriplesconcludingwiththeproof,duetoHilton[30]ofthenecessaryandsufficient conditionsoftheexistenceofSteiner’striplesystems. Theauthor’scredointeachingmathematicsinvolvesadvancingfromexamples andmodelproblemstotheoryandthenbacktoproblemsolving.Thisapproachworks especiallywellincombinatorics.Everysectionofthebookstartswithsimplemodel problems.Discussingandsolvingtheseproblems,wederivethebasicconceptsand definitions.Then,westudyessentialpropertiesoftheconceptsdevelopedandagain solveproblemstoillustratetheideas,methods,andtheirapplications.Inparticular, somepartsofproofsareleftasproblemstobesolvedbythereader.Studyingtheso- lutionsoftypicalproblemsinthebook,thereadercanquicklygraspthemethodsof solvingvariouscombinatorialproblemsandapplythesemethodstoarangeofsimilar problemsinanysubject.Thusthebookcanbeusedasaself-studyguidebythereader interestedinsolvingcombinatorialproblems. Morethan800problemsconstituteanintegralpartofthetext.Manyproblems aredrawnfromliterature,somearefolklore,andsomeareoriginal.Manyproblems aresolvedinthetext,scoresofotherproblemsandexercisesareintheendofeach section.Additionalproblemscanbefoundinthebookscitedinthelistofreferences, specifically,in[11,13,29,38,39,53].Interestingtopicsforfurtherreadingandindivid- Prefacetothefirstedition | IX ualprojectscanbefoundin[4].Solutions,answersorhintstoselectedproblemsand exercisesaregivenintheendofthebook. Combinatorial problems often provide natural intuitive motivation and models forimportantmathematicalideasandconcepts,suchasoperationsonsets,various classesoffunctions,classesofbinaryrelations,andmanyothers.Primarycombina- torial concepts, permutations, combinations and alike, can be naturally defined in termsofsettheoryoperationsandfunctions.Inthetext,wesystematicallyusethis approachthatcanbetraced(atleast)asfarbackasC.Berge’smonograph[8].Notto mentionitsconcisenessandtheoreticalmerits,thisset-theorybasedapproachisof- tenadvantageousinproblemsolving,andwedemonstratethisinthetextusingmany examples.Thisapproachremovestheambiguitythatisoftenpresentincombinato- rialproblems,especiallywhendifferentobjectsmustbeidentified,andsignificantly reducesthenumberofstudenterrors. Itistheauthor’sexperiencethatfreshmenusuallymasterthisapproachwithease andsuccessfullyapplyittoproblemsolving.Forthereaderunfamiliarwiththelan- guageandbasicsofsettheory,Section1.1systematicallydevelopssomestandardter- minology,whichisusedinthefollowingsections.Thereaderfamiliarwithnaiveset theorycanskipSection1.1andreferbacktoitasneeded. Veryfewnon-elementaryconceptsareincludedinthetext.Noconceptbeyond theprecalculuslevelappearsbeforeSection4.3.Twocalculus-levelconcepts,those ofderivativesofelementaryfunctionsandofconvergingseries,appearinSection4.3 ongeneratingfunctions.Fromthispointonthebookcanbesubtitled“Combinatorics throughtheeyesofananalyst”.Eventhenotionofaconvergingseriescanbeelim- inatedandreplacedbythefinitaryconceptofgeneratingpolynomials,thatis,trun- cated power series, and we solve a few problems to demonstrate the method. This approachmakesthemethodofgeneratingfunctionsaccessibletothereaderwithout anycalculusbackgroundatall,thoughcalculationsbecomemoretedious. Itshouldbenotedthatthesedaysmanycollegestudentstakeatleastonecalculus class,butafterwardstheyseenoactualapplicationofcalculus.Therefore,somenon- trivialexamplesofapplicationsofcalculusideasandmethodsareappropriate.The samecanbesaidofthefewelementaryalgebraicconcepts(groups,rings)appearing inChapters4and5. The book is self-contained; all the concepts and definitions used are defined and explained by examples. The Index includes references to important groups of problems and specific methods of their solution, such as “coloring problems” or “methodofgeneratingfunctions”.Throughoutthetext,weuseseveralabbreviations: GFstandsforgeneratingfunction(s),EGFforexponentialgeneratingfunction(s),SDR forsystem(s)ofdistinctrepresentatives,andBIBDforbalancedincompleteblockde- sign(s).Theorems,lemmas,problems,etc.,havethree-digitnumbering,thus,Prob- lem1.2.3referstothethirdprobleminthetextofSection1.2ofChapter1,while1.2.3 meansExercise1.2.3intheendofSection1.2.Figureshavetwo-digitnumbering,thus X | Prefacetothefirstedition ◻ Fig.2.3referstothethirdfigureinChapter2.Thesymbol indicatestheendsofthe proofsofstatementsorsolutionsofproblems. Combinatorialproblemsandgraphicalmodelshavebeenstudiedbymanyout- standing scientists for thousands of years. The web site www.degruyter.com of de GruyterGmbHcontainsmanyinterestinglinksdescribingthehistoryofthesedevel- opmentsandlivesofthepeopleinvolved.Thecoffeecupicon indicatesthatthereis informationavailableatthewebsite.Anyremarks,correctionsandsuggestionsabout [email protected]. Acknowledgments Chapter3isarevisedversionofModule03-1intheDIMACSseriesofeducationalmod- ules, written when the author participated in Reconnect 1998 and Reconnect 1999 conferencesattheDIMACSCenteratRutgersUniversityofNewJersey.Theauthoris gratefultotheDIMACSCenter,itsDirectorProfessorFredRobertsandProfessorMelvin JanowitzfortheirhospitalityandthekindpermissiontoincludeModule03-1inthis text,andtoProfessorCatherineMcGeochforhergeneroushelp. Itisfinallytheauthor’sgreatpleasuretothankSimonAlbroscheit,RobertPlato, FriederikeDittbernerandthestaffofdeGruyterGmbHfortheirfriendlyandhighly professionalhandlingofthewholepublishingprocess.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.