ebook img

A Primer for the Mathematics of Financial Engineering PDF

305 Pages·2008·2.95 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Primer for the Mathematics of Financial Engineering

FINANCIAL ENGINEERING ADVANCED BACKGROUND SERIES FE PRESS New York Financial Engineering Advanced Background Series Published or forthcoming 1. A Primer for the Mathematics of Financial Engineering, by Dan Stefanica 2. Numerical Linear Algebra Methods for Financial Engineering Applica- tions, by Dan Stefanica 3. A Probability Primer for Mathematical Finance, by. Elena Kosygina 4. Differential Equations with Numerical Methods for Financial Engineering, by Dan Stefanica A PRIMER for the MATHEMATICS of FINANCIAL ENGINEERING DAN STEFANICA Baruch College City University of New York FE PRESS New York FE PRESS New York www.fepress.org Information on this title: www.fepress.org/mathematical_primer ©Dan Stefanica 2008 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. First published 2008 Printed in the United States of America ISBN-13 978-0-9797576-0-0 ISBN-10 0-9797576-0-6 To Miriam and to Rianna Contents List of Tables(cid:9) xi Preface(cid:9) xiii Acknowledgments(cid:9) xv How to Use This Book(cid:9) xvii 0. Mathematical preliminaries(cid:9) 1 0.1 Even and odd functions (cid:9) 1 0.2 Useful sums with interesting proofs (cid:9) 4 0.3 Sequences satisfying linear recursions (cid:9) 8 0.4 The "Big 0" and "little o" notations (cid:9) 12 0.5 Exercises (cid:9) 15 1 Calculus review. Options.(cid:9) 19 1.1 Brief review of differentiation(cid:9) 19 1.2 Brief review of integration (cid:9) 21 1.3 Differentiating definite integrals (cid:9) 24 1.4 Limits (cid:9) 26 1.5 L'Hopit al's rule (cid:9) 28 1.6 Multivariable functions (cid:9) 29 1.6.1 Functions of two variables (cid:9) 32 1.7 Plain vanilla European Call and Put options (cid:9) 34 1.8 Arbitrage-free pricing (cid:9) 35 1.9 The Put-Call parity for European options(cid:9) 37 1.10 Forward and Futures contracts (cid:9) 38 1.11 References (cid:9) 40 1.12 Exercises (cid:9) 41 vii (cid:9) viii CONTENTS 2 Numerical integration. Interest Rates. Bonds.(cid:9) 45 2.1 Double integrals (cid:9) 45 2.2 Improper integrals (cid:9) 48 2.3 Differentiating improper integrals (cid:9) 51 2.4 Midpoint, Trapezoidal, and Simpson's rules (cid:9) 52 2.5 Convergence of Numerical Integration Methods (cid:9) 56 2.5.1 Implementation of numerical integration methods(cid:9) 58 2.5.2 A concrete example (cid:9) 62 2.6 Interest Rate Curves (cid:9) 64 2.6.1 Constant interest rates (cid:9) 66 2.6.2 Forward Rates (cid:9) 66 2.6.3 Discretely compounded interest (cid:9) 67 2.7 Bonds. Yield, Duration, Convexity(cid:9) 69 2.7.1 Zero Coupon Bonds (cid:9) 72 2.8 Numerical implementation of bond mathematics (cid:9) 73 2.9 References (cid:9) 77 2.10 Exercises (cid:9) 78 3 Probability concepts. Black—Scholes formula. Greeks and Hedging.(cid:9) 81 3.1 Discrete probability concepts (cid:9) 81 3.2 Continuous probability concepts (cid:9) 83 3.2.1 Variance, covariance, and correlation (cid:9) 85 3.3 The standard normal variable (cid:9) 89 3.4 Normal random variables (cid:9) 91 3.5 The Black-Scholes formula (cid:9) 94 3.6 The Greeks of European options (cid:9) 97 3.6.1 Explaining the magic of Greeks computations (cid:9) 99 3.6.2 Implied volatility (cid:9) 103 3.7 The concept of hedging. A- and F-hedging (cid:9) 105 3.8 Implementation of the Black-Scholes formula (cid:9) 108 3.9 References (cid:9) 110 3.10 Exercises (cid:9) 111 4 Lognormal variables. Risk—neutral pricing.(cid:9) 117 4.1 Change of probability density for functions of random variables 117 4.2 Lognormal random variables (cid:9) 119 4.3 Independent random variables (cid:9) 121

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.