ebook img

A Note on Disk Drag Dynamics PDF

0.53 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Note on Disk Drag Dynamics

A Note on Disk Drag Dynamics NeilJ.Gunther PerformanceDynamicsCompany,CastroValley,CA94552 [email protected] 2 February1,2012 1 0 2 Abstract n Theelectricalpowerconsumedbytypicalmagneticharddiskdrives(HDD)notonlyincreases a J linearlywiththenumberofspindlesbut,moresignificantly,itincreasesasveryfastpower-lawsof speed(RPM)anddiameter. Sincethetheoreticalbasisforthisrelationshipisneitherwell-known 0 norreadilyaccessibleintheliterature,weshowhowtheseexponentsarisefromaerodynamicdisk 3 draganddiscusstheirimportforgreenstoragecapacityplanning. ] F P 1 Introduction . s c Thesemi-empiricalrelationship[1,2,3] [ 1 Power∝ Platters× RPM2.8 × Diameter4.6, (1) v 2 hasbeenusedtomotivate“greener”magneticHDDdesigns[4]. Ofthethreevariablesthatcanused 0 tomatchagivenpowerconstraint,diameterandRPM(revolutionsperminute)havethegreatestimpact 4 duetothehighdegreeoftheirrespectivepositiveexponents(Fig.1). Itisnoteworthythat(1)isnota 6 . functionofcapacity(e.g.,GB);thetypicalmetricusedforstoragecapacityplanning. 1 0 fx 2 20 Lnf 1 20.0 : !" 15.0 x5 x3 x2 v 15 x5 x3 x2 !" i 10.0 X 7.0 r Out[45]= 10 Out[42]= 5.0 x a 3.0 5 x 2.0 1.5 x 1.0 Lnx 0 1 2 3 4 5 1.0 1.5 2.0 3.0 5.0 (a)Linearaxes (b)Log-logaxes !" Figure1: Afastfunctionfamily: f(x) = xp withpowers p =1,2,3,5. TheHDDsusedinlaptopsaredesignedtooperateintheenergy-limitedenvironmentofabattery- powered system. Consequently, those disks tend to be smaller, slower, and have fewer platters. Server HDDs, on the other hand, tend to follow the converse trend. Since the RPM can be varied dynamically(DRPM)[4],diskdrivemanufacturersnowofferthiscapabilityinsomemodels[5]. 2 Calculating Power ForthepurposesofcomparingthepowerconsumptionoftwoHDDmodels(say,aandb)1 itismore convenienttoexpress(1)intheratioform P (cid:18)N (cid:19)(cid:18)Ω (cid:19)2.8(cid:18)D (cid:19)4.6 b = b b b . (2) P N Ω D a a a a whichavoidsthenecessityofotherwisedeterminingaconstantofproportionality. Inthissimplernotation,P isthepowerconsumed(Watts),Nisthenumberofplattersperspindle, Ω is the angular speed (RPM), and D is the platter diameter (not the external form factor) usually expressed in inches in U.S. vendor data sheets. Another convenience of using (2) is that the ratio of twoHDDparametersthatarecommon(e.g.,thesamediameter)simplifiestounitvalue. Example1(RPMVariation). TheparametersinthefollowingtableareforHDDswithasingleplatterN = a N =1andthesamediameterD = D =2.6inches[4]. b a b Singleplatter2.6inchHDD P P Ω Ω P∗ a b a b b 0.91 1.13 15,098 16,263 1.121 2 35.55 19,972 55,819 35.550 35.55 499.73 55,819 143,470 499.782 Hence,onlytheratiooftheangularspeedscontributesin(2)totheestimatedpowerP∗ inthelastcolumn. b Because the exponents in (1) are relatively large, the functions of RPM and diameter are highly nonlinearandthatmeans: • PotentiallylargeenergysavingscanbeachievedevenwithinalimitedselectionofHDDmodels, especiallywhentakeninaggregateacrossSANs,NAS,JBoDs,orRAIDstorageconfigurations. • The key disk parameters are available from vendor data sheets, although some caveats still apply[6]. Example2(DiameterVariation). ThedatausedinthisexamplearetakenfromTables3.3–3.5in1.Theeffect ofreducingHDDdiameter(d)isshowninFig.2. AthighestRPM,boththe d = 2.6inchandd = 2.1inch HDDsarelocatedhigheronthepowerhillthanthed =1.6inchHDD. 3 Theoretical Justification We now turn to providing a theoretical justification for the semi-empirical relationship in (1). As a startingpoint,weassume: 1. Theempiricalexponentscanbeassociatedwithintegers(roundedup) 2. Planerrotationoftheplatterimposesaxialsymmetry 3. Rotationalfrictionispresentsincetheplatterisnotinvacuo Athinrotatingplatterimpliesthatinertiallinearrelationships,likethekineticenergyalone,can- notproduce(1). Rather,rotationalquantities,likemomentsofinertia,aremoreimportant. Rotation also implies that there is aerodynamic friction due to the platter spinning. This is also assumed to be greater than friction in the spindle bearings. Since the HDD platter resides in a sta- tionaryhousing,weassumethereisnotranslationaldragproportionalthecross-sectionalareaofthe platter;astherewouldbeforafan-bladeorpropellerpullingair. 1Suchasthekindofcalculationsrequiredfordatacenterandstoragecapacityplanning. 2 Figure2: SpecificHDDconfigurations(dots)plottedonthepowersurfacedefinedby(1). Thedesign trendistomovetowardthebottomcorneroftheHDDpowersurface. 3.1 Pressure The Bernoulliequationtellsusthatthepressureatsomepointinafluid(e.g.,airwithdensity ρ)is givenby: 1 P = p+ρgh+ ρv2. ρ 2 For the spinning disk, we are only interested in the dynamic contribution of the third term. The externalandhydrostaticcontributionscanbeignored. Sincepressureisforceperunitarea(F/A),theaerodynamicfrictionalforcewillbe 1 F = ρv2C A, (3) ρ d 2 whereC ,thedragcoefficientisanadditionalfudgefactorthatcoversamultitudeofsinsastohowthe d fluiddragactuallyoccurs2. Thedragforcein(3)istobeunderstoodasbeingtangential,ratherthancentripetal. Thevelocity v at any point on the platter surface has magnitude relative to the air in the tangential direction of thediskspin. Similarly,thearea Aisonthesurfaceoftheplatter(notitsedge)wheretheairliterally drags. TheroughnessoftheplattersurfaceiscapturedinC . d 3.2 Power Initsmechanicalform,poweristherateofdoingwork(W)orexpendingenergy. dW P = . (4) dt ForanHDD,however,it’sprobablymoreconvenienttomeasuretheenergylossduetoaerodynamic frictionintermsofthecurrentdrawn(I)atvoltage(V): dq P = IV = V. (5) dt Ifwecountthechargesqaselectrons,thendqVismeasuredinelectron-volts(eV),whichisameasure ofenergy3. Hence,(4)and(5)aredimensionallyequivalent. 2Factorssuchas:shape,roughness,viscosity,compressibility,boundary-layerseparation,etc. 3KeVinananalogTV. 3 Moreover, the work performed in (4) is by virtue of the friction force in (3) acting along an ele- mental(tangential)arclengthds,i.e.,dW = F ds. Hence,thepower ρ ds P = F = F v, (6) ρ ρ dt canbeexpresseddirectlyintermsofthedragforceandthetangentialvelocity. dA dr dΘ r Out[97]= Figure3: DifferentialareaelementdAdefinedonadiskplatter However, each elemental area (dA) on the platter moves with a different tangential speed and thereforeexperiencesadifferentforce. Thus,wehavetointegrateallpossiblepatchesoverthewhole platter. Applying(3),thepowerintegralcanbewrittenas: (cid:90) P ∝ ρv3dA, (7) ignoringanyproportionalityconstant. FromFig.3thesectorialareaontheplattercanbewrittenastheproductofthearcdelta(ds)and radialdelta(dr): dA = ds.dr = (rdθ)dr. (8) Similarly,thetangentialvelocityvectorvisrelatedtothe(axial)angularvelocityΩbyv = Ω×rbut, sinceallthesevectorsareorthogonalonthediskwecanusethescalarform v = |Ω|r. (9) Substituting(8)and(9)into(7)producesthetwo-dimensionalintegral (cid:90) R (cid:90) 2π (cid:90) R (cid:90) 2π P ∝ ρ dr rdθ r3Ω3 ≡ ρΩ3 drr4 dθ, 0 0 0 0 whichyields 2π P ∝ ρΩ3R5. (10) 5 WithD =2R,(10)isidenticalto(1)uptoconstantsofproportionality. 4 Summary Thetheoreticalcontributionsto(1)canbesummarizeinthefollowingsimplesteps: 4 1. FactorthepowerP asΩ3R3×R2 2. R2comesfromthetotalareaoftheplatter 3. ΩRistheangularspeedvofairatanypointonthespinningplatter 4. Whythecube: v3 ≡ Ω3R3? 5. Afactorv2comesfromtheBernoullipressure(F/A)in(3) 6. AnothervfactorcomesfromthedefinitionofpowerP = v×F/Ain(6) Afactorof2shouldalsoincludedsincethedragwilloccuronboththeupperandlowersideof theplatter,butwearenotkeepingtrackofconstantshere.Therecouldalsobeinter-platterturbulence buttheReynold’snumberislikelyalreadysubstantialduetoheadmovement. It has also been shown recently that electrical power consumption is proportional to the third powerofthelogicalblocknumber[7]. ThisislikelyrelatedtoΩ3via(9). TheprecedingdiscussionconcerningHDDaerodynamicpowerconsumptionwillbecomemoot asSSDsbecomeincreasinglycost-effectiveandreliable[8,9,10]. References [1] N.S. Clauss, “A Computational Model of the Thermal Expansion Within a Fixed Disk Drive StorageSystem,”M.S.thesis,Univ.California,Berkeley,1988 [2] I.Sato, K. Otani, M. Mizukami, S. Oguchi, K. Hoshiya, and K-I. Shimokura, “Characteristics of HeatTransferinSmallDiskEnclosuresatHighRotationSpeeds,”IEEETransactionsonCompo- nents,Packaging,andManufacturingTechnology,13(4):1006âA˘S¸1011,December1990 [3] N. Schirle and D.F. Lieu, “History and Trends in the Development of Motorized Spindles for HardDiskDrives,”IEEETransactionsonMagnetics,32(3):1703âA˘S¸1708,May1996 [4] S.Gurumurthi,“PowerManagementofEnterpriseStorageSystems,”Ph.D.thesis,Pennsylvania StateUniv.,2005 [5] M. J. Perenson, “Green Hard Drive Loses Little on Performance: Western Digital’s Caviar GP WD10EACS promises to reduce power consumption; Seagate’s Barracuda 7200.11 1TB, mean- while,wasfastestinwritetests,”PCWorld,Jan4,2008 [6] A.Karabuto,“HDDDiet2: PowerConsumptionandHeatDissipationofEnterpriseHardDisk Drives,”iXBTLabsReviews,March2,2006 [7] A. Hylick, R. Sohan, A. Rice, and B. Jones, “An Analysis of Hard Drive Energy Consump- tion,”IEEEInternationalSymposiumonModeling,AnalysisandSimulationofComputersand TelecommunicationSystems,Baltimore,MD,8-10Sept.,1–10,MASCOTS2008. [8] P.SchmidandA.Roos,“TheSSDPowerConsumptionHoax,”tomshardware.com,June27,2008 [9] “SSDVsHDDPerformanceSpeedLifeCostPowerReliabilityComparison,”teknocrat.com,Au- gust2011 [10] A.LalShimpi,“PowerConsumptionComparisons,”,anandtech.com,March2011 5

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.