ebook img

A new L5 brown dwarf member of the Hyades cluster with chromospheric activity PDF

0.96 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A new L5 brown dwarf member of the Hyades cluster with chromospheric activity

Astronomy&Astrophysicsmanuscriptno.paper_Antonio_Hyades_L5_v5 (cid:13)cESO2017 January13,2017 A new L5 brown dwarf member of the Hyades cluster with chromospheric activity(cid:63) A.Pérez-Garrido1,N.Lodieu2,3,andR.Rebolo2,3,4 1 Dpto.FísicaAplicada,UniversidadPolitécnicadeCartagena,E-30202Cartagena,Murcia,Spain e-mail:[email protected] 2 InstitutodeAstrofísicadeCanarias(IAC),CalleVíaLácteas/n,E-38200LaLaguna,Tenerife,Spain 3 DepartamentodeAstrofísica,UniversidaddeLaLaguna(ULL),E-38206LaLaguna,Tenerife,Spain 4 ConsejoSuperiordeInvestigacionesCientíficas,CSIC,Spain ReceivedJanuary13,2017;accepted(date) 7 1 0 ABSTRACT 2 Aims.OuraimistoidentifybrowndwarfmembersofthenearbyHyadesopenstarclustertodeterminethephotometricandspectro- n scopicpropertiesofbrowndwarfsatmoderatelyoldagesandextendtheknowledgeofthesubstellarmassfunctionofthecluster. a J Methods.Wecross-matchedthe2MASSandAllWISEpubliccataloguesandmeasuredpropermotionstoidentifylow-massstarsand browndwarfcandidatesinanareaofradiuseightdegreesaroundthecentralregionoftheHyadescluster.Weidentifiedobjectswith 2 photometryandpropermotionsconsistentwithclustermembership.Forthefaintest(J=17.2mag)mostpromisingastrometricand 1 photometriclow-masscandidate2MASSJ04183483+2131275,withamembershipprobabilityof94.5%,weobtainedlow-resolution (R=300–1000)andintermediate-resolution(R=2500)spectroscopywiththe10.4mGranTelescopioCanarias. ] R Results.Fromthelow-resolutionspectrawedeterminedaL5.0±0.5spectraltype,consistentwiththeavailablephotometry.Inthe intermediatedispersionspectrumwedetectedHαinemission(marginallyresolvedwithafullwidthhalfmaximumof∼2.8Å)and S determinedalog(L /L )=−6.0dex.FromHαweobtainedaradialvelocityof38.0±2.9km·s−1,whichcombinedwiththeproper . Hα bol h motionleadstospacevelocitieswhicharefullyconsistentwithmembershipintheHyadescluster.Wealsoreportadetectioninthe p H2bandbytheUKIDSSGalacticPlaneSurvey.Usingevolutionarymodelswedeterminefromtheavailablephotometryoftheobject - amassintherange0.039−0.055M(cid:12).Browndwarfswithmassesbelow0.055M(cid:12)shouldfullypreserveitsinitiallithiumcontent,and o indeedthespectrumat6708Åmayshowafeatureconsistentwithlithiumpreservation;however,ahigherS/Nisneededtoconfirm r thispoint. t s Conclusions.Wehaveidentifiedanewhigh-probabilityL5browndwarfmemberoftheHyadescluster.Thisisthefirstrelativelyold a L5browndwarfwithawell-determinedage(500−700Myr)andmeasuredchromosphericemission. [ Keywords. Stars:low-mass—Galaxy:openclustersandassociation(Hyades)—techniques:photometric—techniques:spectro- 1 scopic—surveys v 8 9 31. Introduction afewMyrstoafewhundredMyrs(seereviewsbyBastianetal. 3 2010;Luhman2012). 0Brown dwarfs are objects with masses below 0.075 M(cid:12) unable Older star clusters (>500Myr) like the Hyades (Melotte .to reach high enough temperatures in their cores to trigger hy- 1drogen fusion (Burrows & Liebert 1993; Chabrier & Baraffe 25,α2000=04h26m54s,δ2000=+15◦52(cid:48))offerauniqueopportu- 0 nity to find examples of relatively old brown dwarfs with well- 1997).Theabsenceofstablehydrogenburningcausesthephysi- 7 determinedageandmetallicity.TheHyadeshasameandistance calpropertiesofbrowndwarfstochangedrasticallyasafunction 1 of46.3±0.3pcandistheclosestopenstarclustertotheSun(van :of mass and age. Dynamical determination of masses has been vpossible for a growing list of binary brown dwarfs (e.g. Zapa- Leeuwen 2009). The Hyades exhibit a significant mean proper i motion:µ=∼74–140mas/yr,PA=90o-135o(Bryjaetal.1994), XteroOsorioetal.2004;Dupuy&Liu2012),buttheageisalso atidalradiusof∼10pc,andacoreradiusof2.5–3.0pc(Perry- requiredtofullyconstrainevolutionarymodelsofsubstellarob- arjects(Baraffeetal.1998;Siessetal.2000;Baraffeetal.2015; manetal.1998).Owingtoitsproximity,theclusterspansalarge area over the sky (several hundred square degrees). The age of Feidenetal.2015).Thecharacterizationofbrowndwarfmem- theHyadesis625±50Myrbasedonthecomparisonoftheob- bersofopenstarclustersofwell-knownageisofcapitalimpor- servedclustersequencewithmodelisochrones,althoughawider tance because we are provided with snapshots of the physical agerangecannotbediscarded(Mermilliod1981;Eggen1998). properties (colours, luminosities, spectral energy distributions) The metallicity of high-mass members appears slightly super- of theseobjects at givenages. Searches in star-formingregions solar,around[Fe/H]∼0.13–0.14dex(Boesgaard&Friel1990) andyoungclustershaverevealedbrowndwarfswithagesfrom althoughamorerecentworkbyGebranetal.(2010)suggestsa meansolarmetallicity. (cid:63) BasedonobservationsmadewiththeGranTelescopiodeCanarias (GTC)installedattheSpanishObservatoriodelRoquedelosMucha- Hogan et al. (2008) reported a number of L dwarf candi- chos of the Instituto de Astrofísica de Canarias, on the island of La datesintheHyadesclusterbasedonphotometryandpropermo- Palma. tions. They identified 12 objects with colours resembling those Articlenumber,page1of9 A&Aproofs:manuscriptno.paper_Antonio_Hyades_L5_v5 of field L dwarfs. Recently, Casewell et al. (2014) and Lodieu 0.2 et al. (2014) presented spectroscopic follow-up confirming the Hyades members 0.15 cool nature of most of the candidates reported by Hogan et al. Object from Simbad 2 degrees around 2M0418+21 (2008),althoughtheseauthorsdidnotunambiguouslydetermine 0.1 2M0418+21 whethertheseobjectsarebrowndwarfsorverylow-massstars. Bouvieretal.(2008)discoveredthefirsttwoT-typedwarfsinthe 0.05 Hyades cluster based on low-resolution infrared spectra. These yr) cthoeolmoabsjsecftusnacrteiovne,rByoliukveileyrbertoawl.n(d2w00a8rf)sa.rBgauseeddtohnatth∼e1s5hbarpoewonf (arcsec/µδ 0 dwarfscouldexistinthepresent-dayHyadesclusterandareyet -0.05 to be uncovered. In addition to 2MASSI023301.55+2470406 (Cruz et al. 2007), which was proposed as a L0 member of the -0.1 Hyades (Goldman et al. 2013), a few other known L/T dwarfs -0.15 listed with spectra and proper motions in the compendium of ultracool dwarfs1 could be associated with the Hyades moving -0.2 group(Bannister&Jameson2007;Gagnéetal.2015)andthere- -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 µ cos δ (arcsec/yr) forecouldberelativelyold. α Fig. 1. Proper motion diagram of the Hyades cluster. Green triangles Inthispaper,wepresentthefindingofanewmid-Ldwarf, 2MASSJ04183483+2131275(hereafter2M0418+21)withpho- correspond to Hyades members (Goldman et al. 2013) and the solid squarecorrespondsto2M0418+21.Blackdotscorrespondstoobjects tometry, spectroscopy, proper motion, and radial velocity con- in the Simbad database within a circular radius of 2 degrees around sistent with membership in the Hyades cluster. Furthermore, it 2M0418+21. presents signs of chromospheric activity with a clear detection of Hα in emission on 19 December 2015 for a few hours. In Sect.2wedescribeoursearchfornewverylow-massmembers WISE, and the Sloan Digital Sky Survey (SDSS; York et al. oftheHyades.InSect.3wepresentspectroscopicobservations 2000) were indicative of a mid-L dwarf (Fig. 4; Table 1) that of the most promising candidate found 2M0418+21 conducted iscoolerandsignificantlyfainterthanotherpreviouslyreported withtheGranTelescopiodeCanarias(GTC).InSect.4weanal- HyadesLdwarfs.InSect.3wepresenttheopticalspectralclas- ysetheopticalspectraandputourresultsincontextwithother sificationofthisobject. low-massstarsandbrowndwarfs. 2.2. Propermotioncomputation 2. Newverylow-masspropermotionmemberofthe The proper motion of 2M0418+21 was obtained using the Hyades 2MASS, AllWISE, and UKIDSS GCS catalogues and simply calculatedasµ = ∆αcosδ/∆t andµ = ∆δ/∆t,where∆αand α δ 2.1. Cataloguecross-match ∆δ are the differences between RA and Dec in any two cata- logues. We note that we used the set of coordinates not cor- We cross-matched the Two Micron All Sky Survey (2MASS; rected for proper motion in the AllWISE catalogue. In order Cutri et al. 2003; Skrutskie et al. 2006) point source catalogue to assess the error in our measurement for each pair of cata- and the AllWISE mid-infrared catalogue built upon the Wide- logues we determined the proper motions of all objects placed field Infrared Survey Explorer mission (WISE; Wright et al. 30 arcmin around 2M0418+21. We estimate the error, σ, from 2010) to identify new low-mass stars and substellar members the full width half maximum of each bell-shaped proper mo- in the Hyades cluster. Details of this cross-match will be pre- tion histogram (2.3 times σ). We discarded the proper motion sented in a future paper (Pérez-Garrido et al. 2016, in prep.). measurements from the AllWISE vs UKIDSS GCS pairs ow- Given the temporal baseline between the two surveys (∼11–14 ing to the short baseline between the two observations as it yr)weconductedanastrometricsearchtoidentifyobjectswith mean displacements larger than 100 mas/yr. In our search, we yielded large error bars (∼60 mas/yr). For the other two pairs ofcataloguesweobtainederrorsof∼8mas/yrandtheinitialre- looked for pairs of uncorrelated objects in 2MASS and WISE in a Hyades region of radius 8 degrees centred at 04h26m54s, sulting2M0418+21propermotionswere(129,−53)mas/yrand +15o52(cid:48). Uncorrelated objects are those which are present in (133,−44) mas/yr for 2MASS-AllWISE and 2MASS-UKIDSS GCS, respectively. However, for the Hyades objects a correct one catalogue with no counterpart in the other database within estimation of the proper motion requires taking into account a correlation radius of one arcsec. In a subsequent step, we se- parallacticmotion.Weremovedthisparallacticeffectusingthe lected objects with apparent proper motions measured between both catalogues of 70 < µ cosδ < 130 mas/yr in right ascen- Earth’sbarycentrecoordinatesforeachcatalogueepoch,assum- α sion and −60 < µ < 0 mas/yr in declination. These pairs rep- ingadistanceof48.8pc.Wethenperformedalinearregression δ with the new coordinates from 2MASS, UKIDSS, and WISE resent candidates with proper motions comparable to those of AllSky(wedidnotuseAllWISEsinceitsastrometryisanaver- Hyadesmembers(Fig.1).Thiscorrelationreturned130objects agespanningseveralmonths),andtheresultingfityieldedafinal with proper motions and near-infrared photometry compatible propermotionof(124±7,-53±6)mas/yrforourobject. withclustermembership(Fig.1;Fig.4).WerecoveredseveralL dwarfcandidates(Hoganetal.2008)withspectroscopicfollow- up(Casewelletal.2014;Lodieuetal.2014).Asubsetofthose 2.3. Hyadesmembership 130candidatesfoundinoursearchalsohaveopticalphotometry intheSloanSkyDigitalSurvey(Yorketal.2000).Remarkably, All members of the Hyades cluster seem to move towards weidentifiedanewobjectwhosecoloursmeasuredby2MASS, the cluster convergent point (CP) located at αCP =6h29.48m, δ =6o53(cid:48).4 (Madsen et al. 2002). The angle θ from this ob- CP 1 seehttp://spider.ipac.caltech.edu/staff/davy/ARCHIVE/index.shtml jecttotheconvergentpoint(measuredastheanglebetweenthe Articlenumber,page2of9 PérezGarridoetal.:AnewL5memberoftheHyades 5 4 t = 600 Myr t = 700 Myr 3 2M0418+12 K J-2 1 0.8 W20.6 1- W0.4 0.2 3.8 23.6 W J-3.4 3.2 0.02 0.03 0.04 0.05 0.06 0.07 0.08 M/M sun Fig.3.J−K,W1−W2,andJ−W2colourasafunctionofmassfromthe AMES-Dustyevolutionarymodel.Thedashedredlinewiththebottom andtopredlinerepresenttheW1−W2(AllWISE)andJ−K(UKIDSS) coloursof2M0418+21withtheirerrorbars. Fig.2.Findingchartof2M0418+21inJbandfromUKIDSSGalactic ClusterSurvey. 7 Hyades known L dwarfs Hyades members line pointing to the north and the line to the CP) can be calcu- Field L and T dwarfs 8 2M0418+21 latedasinHoganetal.(2008).Thisangleshouldbecompared Dupuy & Liu 2012 tothepropermotionangle,θ .Valuesfortheseangleswithdif- PM ferencesbelow12o wouldindicatethatourobjectismovingto- 9 wardstheHyadesCP.Inourcasewegetθ=110oandθPM=113o. W2 Wealsocalculateapropermotiondistanceof41.7pcusingEq. M 10 (3) of Hogan et al. (2008). Both estimations are in good agree- ment with what we expect for Hyades members (van Leeuwen 2007). 11 Furthermore, we use the maximum likelihood method de- scribed in Sanders (1971) to assess the Hyades membership 12 probability of 2M0418+21. This method assumes two overlap- pingnormalbivariatefrequencyfunctions,oneforfieldstarsand 0 0.25 0.5 0.75 one for the cluster. In our implementation we input the known W1-W2 proper motion of the Hyades cluster, µ = 115 and µ = −40 Fig.4.(W1−W2,M )colour-magnitudediagramdepictingknownL α δ W2 (mas/yr),andletthealgorithmestimatethemeanpropermotion dwarfsintheHyades(redsquares;Hoganetal.2008;Casewelletal. offieldobjects.Weconsideredallpointsourceswithinaradius 2014; Lodieu et al. 2014), Hyades high-mass and low-mass members of 30 arcmin around 2M0418+21, finding a membership prob- (black dots; Goldman et al. 2013), the mean sequence of field L and ability of 94.5% for 2M0418+21. Therefore, this object can be Tdwarfsshiftedto46.3pc(purpleline;Dupuy&Liu2012),andour target2M0418+21(solidsquare;thiswork). consideredfrombothphotometryandpropermotionasamem- beroftheHyadescluster. We checked the H (1–0)-band image obtained by the 2 UKIDSS Galactic Plane Survey on 29 November 2005. The 2.4. Additionalphotometry DR10 catalogue gives a magnitude of 15.247±0.029 mag with Inadditiontothe JHK near-infraredphotometryfrom2MASS anellipticitybelow0.06androundnessparametersindicatinga s andmid-infrareddatafromWISE,2M0418+21isalsocovered pointsource.However,2M0418+21standsoutinthe(J−H ,J) 2 by the Sloan Sky Digital Survey Data Release 9 (York et al. and (H − H ,H) colour-magnitude diagrams in comparison to 2 2000;Ahnetal.2012a)andtheUKIRTInfraredDeepSkySur- other point-like objects within five arcmin (Fig. 5). Its J − H 2 vey (UKIDSS; Lawrence et al. 2007) Galactic Clusters Survey andH−H coloursareredderthananyotherpointsourceinthe 2 andGalacticPlaneSurveys.2M0418+21isdetectedintheSloan field (Fig. 5). However, its location in the (K − H ,K) colour- 2 zbandonlyandinvariousfiltersfromUKIDSSwithtwodistinct magnitudediagramfitsthemainsequenceofpointsourceswell epochs(1December2005forK1and29November2005forK). (right side plot in Fig. 5). The H (1–0) is centred at 2.12 mi- 2 Wesummarizethephotometryavailablefor2M0418+21inTa- crons with a 50% cut-off of 0.1 microns, and is usually used ble 1 and display a J-band finding chart from UKIDSS in Fig. toprobethepresenceofmolecularemissionfromcircumstellar 2. disks.Wedonotseeanyobviouspresenceofajetinthe5arcmin Articlenumber,page3of9 A&Aproofs:manuscriptno.paper_Antonio_Hyades_L5_v5 image.WehavecheckedtheHerschelandALMAarchives,but Table1.Compilationofthephotometryfor2M0418+21. thesearchdidnotreturnanypublicimageatthetimeofwriting so we cannot discuss further the presence or absence of a disk R.A.(2MASS) 04:18:34.83 around2M0418+21. dec(2MASS) +21:31:27.5 We added two samples of objects in Fig. 5 to place the H z(SDSSDR9) 20.338±0.116mag 2 photometry of 2M0418+21 in context. We cross-matched the J(2MASS) 17.152±0.239mag fulllistofHyadesmembersfromGoldmanetal.(2013)withthe H(2MASS) 16.265±0.211mag UKIDSSGPSDR10andfound79sourceswithH2 photometry Ks(2MASS) 15.381±0.198mag (redopensquaresinFig.5).However,onlyahandfulhavemag- J(UKIDSSGPSDR10) 17.211±0.016mag nitudesfainterthan12mag.Onlyonesourcehasan H magni- H(UKIDSSGPSDR10) 16.147±0.011mag 2 tudefainterthan13mag,safelybelowthesaturationlimitsofthe K (UKIDSSGPSDR10) 15.208±0.013mag UKIDSSshallowsurveys(Lodieuetal.2007).Wealsoincluded H2(UKIDSSGPSDR10) 15.247±0.029mag two L dwarfs covered by the GPS among all field L/T dwarfs K1(UKIDSSGCSDR10) 15.230±0.015mag listed in the compendium of ultracool dwarfs2. One object is W1(AllWISE) 14.300±0.029mag 2MASSWJ0326137+295015 classified in the optical as a L3.5 W2(AllWISE) 13.894±0.045mag dwarf(Kirkpatricketal.1999)withatrigonometricdistanceof µαcosδ 124±7mas/yr 32.2+1.49 pcandameanpropermotionof69.4±0.8mas/yrwith µδ −53±6mas/yr −1.64 a position angle of 344.3±0.7 degrees (Dahn et al. 2002). The Notes.Photometryintheoptical,near-infrared,andmid-infraredfrom proper motion of this source is lower than the average motion SDSSDR9(Yorketal.2000;Ahnetal.2012b),2MASSPointSource ofHyadesmemberswithadiscrepantpositionangleanditlies catalogue(Cutrietal.2003;Skrutskieetal.2006),UKIDSSGalactic closer than the Hyades, arguing against its membership in the PlaneSurveyandGalacticClustersSurvey(Lawrenceetal.2007;Lucas Hyades.Theothersourceis2MASSIJ0409095+210439(L3.0; et al. 2008), and AllWISE (Wright et al. 2010), as well as the mean Kirkpatrick et al. 2000). This object lies close to the centre of propermotiondeterminedinthispaper.Thereisnoreliabledetection theHyadesclusterandhasapropermotionof101±15,−148±12 intheSDSSifilterandtheWISEw3band. mas/yr(Casewelletal.2008)andaspectrophotometricdistance of 35.9–39.8 pc, which makes it a potential L dwarf member We collected two new optical spectra of 2M0418+21 with of the Hyades cluster. We observe a possible trend of redder J − H and H − H colours with later spectral types in the L the R1000R grating on GTC/OSIRIS as part of filler program 2 2 GTC38–15A (PI Lodieu). We used the same configuration as dwarfregime. above, except for the grating which offers a resolution that is higherbyapproximatelyafactorof3.Wesettheon-sourcein- 2.5. Massestimate tegration to 1800 sec, repeated twice with a shift of 10 arcsec In Fig. 3 we compare the colours of 2M0418+21 with predic- (equivalent to 40 pixels) along the slit. The seeing was poor, around1.8arcsec,buttheskywasclearandthemoonwaswithin tionsforbrowndwarfsofvariousmassesattheageoftheHyades 7daysofnewmoon. using the evolutionary models of the Lyon group (Allard et al. 2001;Chabrieretal.2000).Eachcolourgivesaslightlydifferent We reduced the optical spectra under the IRAF environ- massestimation:0.044+0.005M ,0.046+0.010M ,and0.054+0.001 ment(Tody1986,1993)inastandardmanner.First,wemedian- −0.005 (cid:12) −0.005 (cid:12) −0.001 combinedthebiasandflatfieldstakenduringtheafternoon.We M for J −K, W1−W2, and J −W2, respectively. We infer a (cid:12) subtractedthemeanbiasfromtherawspectrumofthetargetand likely mass between 0.039–0.055 M with an average value of 0.048+0.007 M for2M0418+21.Tos(cid:12)ummarize,wehaveidenti- divided by the normalized flat field. We extracted the 1D spec- −0.009 (cid:12) trumbyoptimallychoosingbackgroundlevel.Wecalibratedthe fiedahighlyprobablebrowndwarfmemberoftheHyadesclus- 1D spectra with the response function derived from the spec- ter. trophotometricstandardstarRoss640(DZ5;Harrington&Dahn 1980;Monetetal.2003;Cutrietal.2003;Lépine&Shara2005; 3. Spectroscopicobservations Sion et al. 2009). The final spectra of 2M0418+21, normalized at7500Å,aredisplayedinFigure6alongwithknownLdwarf Wecollectedseveralopticalspectrawiththreedifferentgratings spectra templates from the literature (Schmidt et al. 2010; Fan installed on the OSIRIS (Optical System for Imaging and low- etal.2000;Leggettetal.2002;Geballeetal.2002). intermediate Resolution Integrated Spectroscopy; Cepa et al. 2000) spectrograph on the 10.4m GTC in La Palma to char- acterize the target. OSIRIS is equipped with two 2048 × 4096 3.2. Medium-resolutionopticalspectroscopy MarconiCCD42-82detectorsofferingafieldofviewofapprox- imately7×7arcmin2withabinnedpixelscaleof0.25arcsec. Following the analysis of the low-resolution spectra, we re- quested a dedicated program to take optical spectra with the highestresolutiongratingavailable(R2500R)onGTC/OSIRIS, 3.1. Low-resolutionopticalspectroscopy offeringaresolutionof∼2400at6600Åwithaslitof1arcsec. We obtained two low-resolution optical spectra of 2M0418+21 Wesecuredfivegroupsoftwospectraof30minon-sourceeach withtheR300RgratingonGTC/OSIRISonthenightsof25and shiftedalongtheslitby10arcsec,yieldingatotalon-sourceex- posure of 5h. The observations were taken on the night of 19 26January2015underfillerprogramGTC51–14B(PILodieu). December2015underavariableseeingof1.3–1.5arcsec,spec- We used an on-source integration of 1800 sec for both spectra troscopic conditions, and the moon illuminated at 65% located with the following configuration: slit of 1 arcsec and 2×2 bin- at50degreesfromourtarget. ning.Theobservationswereobtainedunderaseeingof1.3arc- We reduced the R2500R spectra under the IRAF environ- sec,withgreyskyandclearconditions. ment (Tody 1986, 1993) taking advantage of the fact that all 2 seehttp://spider.ipac.caltech.edu/staff/davy/ARCHIVE/index.shtml spectrawereobtainedconsecutivelyonthesamenight.Wesub- Articlenumber,page4of9 PérezGarridoetal.:AnewL5memberoftheHyades 13 13 13 14 14 14 15 15 15 J H K 16 16 16 17 17 17 18 18 18 19 19 19 0.5 1.0 1.5 2.0 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 -0.4 -0.2 0.0 0.2 0.4 J − H H − H K − H 2 2 2 Fig.5.Left:(J−H ,J)colour-magnitudeforallpointsourceswithin5arcminof2M0418+21highlightedbyalargereddot.Middle:Samebut 2 for(H−H ,H).Right:Samebutfor(K−H ,K).HyadesmembersfromGoldmanetal.(2013)andfieldL/TdwarfswithH photometryfromthe 2 2 2 UKIDSSGPSareplottedasredandblueopensquares,respectively. 6 2M0418+21 (GTC/OSIRIS R300R) 5 2MASS J08251968+2115521 (L6) x u 4 Fl 2M0418+21 (GTC/OSIRIS R1000R) d SDSS J053952-005902 (L5) e z ali 3 m or 2M0418+21 (GTC/OSIRIS R300R) N 2 L5 (SDSS standard) 1 2M0418+21 (GTC/OSIRIS R300R) 2MASS J00361617+1821104 (L4) 0 6000 7000 8000 9000 10000 Wavelength (Angstroms) Fig. 6. Low-resolution optical spectra of 2M0418 obtained with the R300R (three spectra) and R1000R (third from bottom) gratings on Fig. 7. Bottom: Combined 1D optical spectrum of 2M0418+21 taken GTC/OSIRIS (black lines). The continuum of the spectra are offset withtheR2500RgratingonGTC/OSIRISon19December2015.No vertically by 1.5 for visualization purposes. From top to bottom: We smoothingwasapplied.Top:Finalcombined2DimageoftheR2500R overplottedthespectraof2MASSJ00361617+1821104(L4;green),the spectrum of 2M0418+21. The white dot on the left-hand side corre- Sloandwarftemplate(L5;red),thespectrumofSDSSJ053952−005902 spondstotheHαemission.Thefaintcontinuumisbarelyseen,butis (L5; red), and 2MASSJ08251968+2115521 (L6; green). See text for present. details. the detector+grating derived from the spectrophotometric stan- tractedeachpairofopticalspectratoremovethecontributionof dardstarFeige110(Høgetal.2000;vanLeeuwen2007;Drilling thesky.Then,weaveragedthefivespectraatthenominalposi- etal.2013).Thefinal1Dspectrumof2M0418+21isdisplayed tion(“firstframe”)andtheshiftedposition(“secondframe”)re- inFig.7.TheemissionlinecorrespondstoHαat6563Å.There jectingthelowestandhighestvaluestocreateacombinedspec- is no evidence of Hα emission in the spectrum gathered with trum at each position. Later, we combined the two frames by the R300R grism; however, data from the R1000R grism show shiftingthesecondframetothefirstone.Thefinal2Dimageis signsofHαinemissionwithapseudo-equivalentwidth(pEW) shownatthetopofFig.7,wheretheHαemissionlinestandsout between4–10Å,althoughitslowsignal-to-noiseratiodoesnot asawhitedotwithasignal-to-noiseof10ontopofaveryfaint makeitareliabledetection. continuum with a signal-to-noise of ∼2 per spectral resolution elementof2.6Å. Weoptimallyextractedthespectrumbyselectingthenomi- 4. Analysis nalpositionfittingthebackgroundwithoutcosmicraysrejection. 4.1. Spectralclassificationandspectroscopicdistance Wecalibratedourspectruminwavelengthbyfittinga1Dpoly- nomialto20arclineswithadispersionof1.03Å/pixelandarms Theoverallappearanceofthe2M0418+21low-resolutionspec- of 0.05 Å, corresponding to radial velocity precisions of ∼2.3 trum displayed in Fig. 6 suggests a mid-L dwarf. To de- km/s.Wecalibratedthisspectrumwiththeresponsefunctionof rive a spectral type with better accuracy, we compared our Articlenumber,page5of9 A&Aproofs:manuscriptno.paper_Antonio_Hyades_L5_v5 GTC/OSIRIS spectrum with the Sloan L dwarf template pub- age we can discard accretion as the origin of this emission and licly available for each subclass (Schmidt et al. 2010, 2014). postulatechromosphericactivityasitscause. We find the L5 SDSS template (red line) provides the best fit 2M0418+21representsanimportantadditiontothesample to our spectrum (black line) up to 9000 Å (Fig. 6). We also of L5 dwarfs with detected Hα emission and log (L /L ) 10 Hα bol compared our optical spectrum to a set of spectral templates measurements because its age is well constrained to 625±50 listedonSandyLeggett’swebpage3anddiscoveredbytheSloan Myr. We collected a large number of L4.5–L5.5 with reported team (Knapp et al. 2004; Golimowski et al. 2004; Chiu et al. Hα pEWs, yielding a wide range of values in log (L /L ). 2006),including2MASSJ00361617+1821104(L4; Reidetal. The highest values can reach up to −3.7 dex, while10theHfαainbtoelst 2000; Kirkpatrick et al. 2000; Knapp et al. 2004), LHS102B upperlimitliesaround−7.5dex.Reiners&Basri(2008)looked (L4.5–L5(binary);EROSCollaborationetal.1999;Henryetal. at one L4.5 and three L5 and placed upper limits on the 2006; Kirkpatrick et al. 2001), SDSS05395199−0059020 (L5), log (L /L ). The sample of SDSS L5 dwarfs includes 10 10 Hα bol SDSS13262982−0038315 (L5.5; Fan et al. 2000; Vrba et al. L4.5, 24 L5, and 2 L5.5 sources with seven detections of Hα 2004) and 2MASS08251968+2115521 (L6; Kirkpatrick et al. inemission,andthreeclassifiedasvariable(Schmidtetal.2007, 2000;Dahnetal.2002).WefindthebestmatchfortheL5dwarf 2015). In their sample, Pineda et al. (2016) included three L5 up to 10000 Å, as in the case of the SDSS templates. The L4 with Hα in emission in one of them. They inferred a fraction andL6dwarfsarebluerandredderbeyond8800Å,respectively of emitters of 20% (15–35%; 68% confidence limit), consis- (Fig.6).TheL6hasamuchstraighterredwardspectrumthanour tent with the interval from the SDSS sample (Schmidt et al. target,markedbythepresenceoftheFeHbandsat∼8700Åand 2007,2015)althoughtodatetherearefewsources.Wealsonote theH Obandat∼9300Å.Asaconsequence,wederiveanun- that a large number of L dwarfs show variability in their level 2 certaintyofhalfasubclassforouropticalspectralclassification of chromospheric activity (Liebert et al. 2003; Reiners & Basri bycomparisonwiththemid-Ldwarfstandards. 2008;Schmidtetal.2015;Pinedaetal.2016),themoststriking Assuming the spectral type vs absolute magnitude relation casebeingtheL5.5e+T7binary2MASSIJ1315309−264951AB for L5 dwarfs from Dupuy & Liu (2012) in all five passbands (L5.5; Hall 2002a,b; Gizis 2002; Burgasser et al. 2011, 2013, available for 2M0418+21, we derive spectrophotometric dis- 2015). tances of 57.8, 53.1, 50.1, 42.3, and 40.6 pc in J, H, K, w1, and w2, respectively, with typical errors in the 5–10 pc range. 4.3. Radialvelocityandspacemotion These error bars take into account the uncertainty of 0.5 class inthespectraltype.Weobserveatrendtowardscloserdistances WemeasuredthepositionoftheHαlineinthe1Dspectrumwith withredderwavelengths.Averagingallthesemeasurementswith thesplottaskunderIRAF.Weidentifiedthelineat6564.11Å equalweightsbecauseweassumethatthepolynomialfitsineach withanerrorof0.04Å,whilethenominalairwavelengthfrom filterrepresentindependentmeasurements,weinferameandis- the NIST Atomic Spectra Database is 6562.819 Å. We should tance of 48.8±4.0 pc. The error on the distance is rms on the add in quadrature the error on our wavelength calibration (2.3 distancedividedbythesquarerootof5(thenumberofmeasure- ments).Weassumethat2M0418+21issingle.Ourmeanvalue km/s, see Section 3.2) and uncertainty due to the timespan in our observations (0.2 km/s). We inferred a radial velocity of isclosetotheaccepteddistanceoftheHyadesclusterfromHip- 38.0±2.9 km/s (Table 2) after correcting for the rotation of the parcos(46.3±0.3pc;vanLeeuwen2009). Earth,themotionoftheEartharoundtheEarth-Moonbarycen- tre,theorbitofthebarycentreabouttheSun,andmotionofthe 4.2. Hαemission Sunrelativetothespecifiedstandardofrest.Ourvalueisinclose agreementwiththemeanvaluesderivedindependentlyfromthe We detected a clear emission line present in each individual ground (39.1±0.2 km/s; Detweiler et al. 1984) and from space spectrumatthenominalpositionofHα(6562.8Å)overthefull with Hipparcos (39.48±0.30 km/s; de Bruijne et al. 2001). We time of observations, from UT=22h to UT=1h40 (Fig. 7). This inferaspacemotionof[U,V,W]=[−42.92,−23.96,−0.72]km/s isthefirstdetectionofHαinemissioninamid-Ldwarfclassi- for 2M0418+21 (Table 2), in close agreement with the space fiedasahigh-probabilityphotometric,astrometric,andspectro- motion of the cluster centre: [−41.1, −19.2, −1.4] km/s (van scopiccandidatememberoftheHyadescluster.However,com- Leeuwen2009). parable levels of activity have been reported in field L dwarfs AccordingtoVizier,2M0418+21shouldhaveaGaiaG-band (Schmidtetal.2015;Pinedaetal.2016). of19.096andshouldbeincludedintheInitialGaiaSourceList We measured the ratio of Hα to bolometric luminosity (Smart&Nicastro2014),implyingthatprecisecoordinatesand for our target following the method outlined in Burgasser propermotionswillbesoonavailablesincethesecondGaiadata et al. (2011). We calibrated the flux of 2M0418+21 with release is expected at the end of 2017. However, based on the the spectrophotometric standard star Feige110 observed with equation G − J∼0.244×SpT−12.6332 kindly provided by R. GTC/OSIRISonthesamenight.WeconsideredtheR-bandmag- Smart, 2M0418+21 might haveG∼20.4 mag, placing it at the nitude of Feige110 (11.70 mag; Landolt & Uomoto 2007) be- faint end of the Gaia catalogue. Therefore, it is unclear at this cause it contains the Hα line. In this passband our target is stagewhetheritsmembershiptotheHyadesclusterwillbeset- ∼30,000timesfainterthanFeige110.Weassumedabolometric tledbyGaiainthenearfuture. correctionintheKbandof3.3foraL5dwarf(Golimowskietal. 2004)andassumedasolarbolometricluminosityofM =4.74. bol We used the distance of 48.8 pc for 2M0418+21 (see previous 4.4. Lithiumabsorption section).Weinferavalueoflog (L /L )=−6.0dex,consis- 10 Hα bol tentwiththedropinactivityseenfromlate-Mtomid-Ldwarfs Thelithiumtestwasproposedintheearly1990stodistinguish (see e.g. Figure 5 of Berger et al. 2010). Owing to the cluster between very low-mass stars and brown dwarfs (Rebolo et al. 1992; Magazzu et al. 1993). The technique relies on the detec- 3 http://staff.gemini.edu/∼sleggett/LTdata.html tionoflithiuminabsorptionat6707.8Åforlate-MandLdwarfs Articlenumber,page6of9 PérezGarridoetal.:AnewL5memberoftheHyades Table2.Resultsofourspectroscopicanalysis. t = 400 Myr SpT L5±0.5 1 t = 600 Myr t = 800 Myr Spectroscopicdistance 48.8±4.0pc Radialvelocity 38.0±2.9km/s 0.8 LWUV 2.−−8−042023×...79912260k2kk9mmme/r//sgss/s Lithium fraction0.6 log (Lbol/L ) −6.0dex 0.4 10 Hα bol Notes. We quote the spectral type, spectroscopic distance, radial ve- 0.2 locity, space motion, and ratio of the log (L /L ) luminosity for 10 Hα bol 2M0418+21. 0 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 M/M sun Fig.8.Fractionoflithiumasafunctionofmassforobjectsbelow0.08 straddlingthestellar-substellarboundary.Iflithiumisdetected, M attheageoftheHyadescluster(625±50Myr)usingtheAMES- theobjectissubstellar. (cid:12) Dustymodel.Weaddedthesamecurvesfortwobracketingagesof400 Brown dwarf evolutionary models predict a lithium conser- Myrand800Myr. vation of 95% for 0.050M brown dwarfs independent of age, (cid:12) whereas a 0.055 M should conserve 50% of its initial Li con- (cid:12) tent and a 0.060 M should have totally destroyed lithium at (cid:12) 6 the age of the Hyades. In Fig. 8 we show the predicted lithium 2M0418+21 (GTC/OSIRIS R2500R) Binning 5 times depletion/preservation as a function of mass at the age of the 5 Li Luhman16A (VLT/X-shooter) Hyades. The observation of the lithium feature at 6707.8 Å in 4 msciosildtoe-unLrcsyd):wamnadorfdstehlcesopruehlpdyrsoipcdosuteconefttbihaoletlhyintpthereroivaotirmddeoesaspchcrierbirteiicdcapblryotepthsetertoileiftshci(oui.nme-. malized Flux 23 contentforthesamemass.ManynearbyoldfieldLdwarfsshow Nor 1 lithiuminabsorptionwithmorethan60%ofLdwarfswithspec- traltypeslaterthanL5havingpseudo-equivalentwidthsgreater 0 than10–15Å,suggestingthatthegreatmajorityof>L5dwarfs -1 arebrowndwarfs. 6600 6800 Wave7l0e0n0gth (Angstroms)7200 7400 7600 Can lithium be detected in a mid-L dwarf at the age of the Fig. 9. GTC OSIRIS medium-resolution optical spectrum of Hyades? There are several detections of the lithium resonance 2M0415+21 binned by a factor of five (black line) compared to the doubletat6707.8ÅreportedintheliteratureforfieldLdwarfs smoothed(R∼730)VLTX-shooterspectrum(redline)ofLuhman16A. Thepositionofthelithiumfeatureisindicatedbyabluedashedvertical with pEWs ranging from 1 Å to 20 Å (Kirkpatrick et al. 2000, line. 2008; Cruz et al. 2009; Zapatero Osorio et al. 2014). For in- stance, Faherty et al. (2014) and Lodieu et al. (2015) have re- ported the detection of lithium in the two components of the nearestbinary(L7–T0)browndwarftotheSun,Luhman16AB 4.5. Alkalilines (Luhman 2013). If preserved at the level predicted, there is a high probability that lithium can be detected in Hyades mid-L dwarfs. A determination of the lithium abundance in low-mass We measured the pEWs of two alkali lines present in the spec- Hyadesmemberswouldprovideprecisedeterminationsoftheir traofmid-Ldwarfs,whichareknowntobesensitivetogravity. massesandconfirmthemasgenuineHyadesbrowndwarfs. They are better detected than the NaI doublet at ∼8200 Å ow- In Fig. 9 we compare our medium-resolution optical spec- ing to the low signal-to-noise of our spectra and the redness of trum of 2M0418+21 smoothed by a factor of nine (black line) mid-Ldwarfs.Ontheonehand,wemeasuredconsistentpEWs withtheunsmoothedVLTX-shooterspectrum(redline)ofLuh- of 5±2 Å for the RbI feature at 8946 Å in both low-resolution man16A(L7;R∼11000;Lodieuetal.2015).Bydirectcompar- spectra.WecheckedthestrengthofthislineinseveralLdwarfs ison with the clear lithium absorption present in the X-shooter withspectraltypesbetweenL3andL8downloadedfromSandy spectrum of Luhman16A, we observe a wide feature around Leggett’shomepageandinLuhman16AB(Lodieuetal.2015), 6708Åthatmightbeconsistentinstrengthwiththefullpreser- yieldingpEWsinthe3–7Årange.Ontheotherhand,wemea- vationoflithium.Wemeasuredanequivalentwidthintherange sured a pEW of 5.0±0.5 Å for the CsI line at 8521 Å, consis- 15–20Å.However,wecannotclaimthedetectionoflithiumdue tent with the 3–6 Å range for L4–L6 dwarfs (see Figure 17 of tothelowsignal-to-noiseofthespectrum.Iftheabsorptionfea- Lodieuetal.2015),obtainedusingdatafromKirkpatricketal. turewereconfirmedasbeingduetolithiumwithahigherqual- (2000)andBurgasseretal.(2003).ThefitsfromDupuy&Liu ity spectrum., it would imply a mass below 0.050 M . If true, (2012)suggests M =13.40magforaL5dwarfwithanrmsof (cid:12) J 2M0418+21wouldbecomethefirstrelativelyoldL-typebrown 0.39 mag. Our object would have M = 13.71±0.07 mag, con- J dwarf with well-determined mass and age. Its photometric and sistentwithfielddwarfwithintheuncertainties.Atthisspectral spectroscopic properties would represent a benchmark to clas- type(mid-Ldwarfs),Figure25ofLiuetal.(2016)suggeststhat sifyisolatedobjectsinthefieldforwhichneithermassnorage young objects have fainter absolute J-band magnitude, so our canbereliablydetermined. targetismostconsistentwiththefieldpopulation. Articlenumber,page7of9 A&Aproofs:manuscriptno.paper_Antonio_Hyades_L5_v5 5. Conclusions (MPAGarching),Max-Planck-InstitutfürExtraterrestrischePhysik(MPE),Na- tionalAstronomicalObservatoryofChina,NewMexicoStateUniversity,New Wecross-matchedthe2MASSandAllWISEdatabasesforiden- York University, University of Notre Dame, Observatário Nacional / MCTI, tification of very low-mass stars and brown dwarfs with proper TheOhioStateUniversity,PennsylvaniaStateUniversity,ShanghaiAstronom- motions consistent with membership in the Hyades cluster. We icalObservatory,UnitedKingdomParticipationGroup,UniversidadNacional reportonthespectroscopicfollow-upwithGTC/OSIRISofone AutónomadeMéxico,UniversityofArizona,UniversityofColoradoBoulder, UniversityofOxford,UniversityofPortsmouth,UniversityofUtah,University faint proper motion candidate, 2M0418+21, discovered in this ofVirginia,UniversityofWashington,UniversityofWisconsin,VanderbiltUni- search.Accordingtoitsphotometry,propermotion/radialveloc- versity,andYaleUniversity.Thispublicationmakesuseofdataproductsfrom ity,andspectroscopicpropertiesweconcludethatthisobjectis the Wide-field Infrared Survey Explorer, which is a joint project of the Uni- versityofCalifornia,LosAngeles,andtheJetPropulsionLaboratory/California verylikelyabrowndwarfmemberoftheHyades.Themainre- InstituteofTechnology,fundedbytheNationalAeronauticsandSpaceAdminis- sults obtained from the astrometric, photometric, and spectro- tration.ThisresearchhasmadeuseoftheSimbadandVizierdatabases,operated scopicanalysisofthe2M0418+21dataareasfollows: attheCentredeDonnéesAstronomiquesdeStrasbourg(CDS),andofNASA’s AstrophysicsDataSystemBibliographicServices(ADS). • apropermotionfullyconsistentwiththatoftheHyadesclus- ter,wherethemaximumlikelihoodmethodsuggestsaprob- abilitygreaterthan90%formembershipintheHyades; References • anopticalspectraltypeofL5.0±0.5fullyconsistentwiththe measuredphotometriccolours; Ahn,C.P.,Alexandroff,R.,AllendePrieto,C.,etal.2012a,ApJS,203,21 • aradialvelocityof38.0±2.9km/s,whichiscombinedwith Ahn,C.P.,Alexandroff,R.,AllendePrieto,C.,etal.2012b,ApJS,203,21 Allard,F.,Hauschildt,P.H.,Alexander,D.R.,Tamanai,A.,&Schweitzer,A. our proper motion to yield a space motion fully consistent 2001,ApJ,556,357 withthatofhighermassHyadesmembers; Bannister,N.P.&Jameson,R.F.2007,MNRAS,378,L24 • ameanspectrophotometricdistanceof48.8±4.0pc; Baraffe,I.,Chabrier,G.,Allard,F.,&Hauschildt,P.H.1998,A&A,337,403 • anmassestimatedfromevolutionarymodelsandphotometry Baraffe,I.,Homeier,D.,Allard,F.,&Chabrier,G.2015,A&A,577,A42 Bastian,N.,Covey,K.R.,&Meyer,M.R.2010,ARA&A,48,339 between0.039–0.055M(cid:12),i.e.inthebrowndwarfdomain; Berger,E.,Basri,G.,Fleming,T.A.,etal.2010,ApJ,709,332 • aspectrumconsistentwithlithiuminabsorptionat6707.8Å; Boesgaard,A.M.&Friel,E.D.1990,ApJ,351,467 however, a higher signal-to-noise is required to confirm the Bouvier,J.,Kendall,T.,Meeus,G.,etal.2008,A&A,481,661 Bryja,C.,Humphreys,R.M.,&Jones,T.J.1994,AJ,107,246 fullpreservationoflithiumexpectedforanobjectwithmass Burgasser,A.J.,Kirkpatrick,J.D.,Liebert,J.,&Burrows,A.2003,ApJ,594, below0.050M(cid:12); 510 • strong Hα emission detected in the intermediate-resolution Burgasser,A.J.,Logsdon,S.E.,Gagné,J.,etal.2015,ApJS,220,18 optical spectra obtained on 19 December 2015 leading to a Burgasser,A.J.,Melis,C.,Zauderer,B.A.,&Berger,E.2013,ApJ,762,L3 Burgasser,A.J.,Sitarski,B.N.,Gelino,C.R.,Logsdon,S.E.,&Perrin,M.D. Hα to bolometric luminosity ratio of −6.0 dex between the 2011,ApJ,739,49 strongestmid-Lemittersandthecurrentupperlimitssetfor Burrows,A.&Liebert,J.1993,ReviewsofModernPhysics,65,301 oldfieldLdwarfs. Casali,M.,Adamson,A.,AlvesdeOliveira,C.,etal.2007,A&A,467,777 Casewell,S.L.,Jameson,R.F.,&Burleigh,M.R.2008,MNRAS,390,1517 These findings make 2M0418+21 the faintest and oldest Casewell,S.L.,Littlefair,S.P.,Burleigh,M.R.,&Roy,M.2014,MNRAS,441, 2644 mid-LbrowndwarfwithaknownageexhibitingHαemission. Cepa,J.,Aguiar,M.,Escalera,V.G.,etal.2000,inProc.SPIE,Vol.4008,Op- tical and IR Telescope Instrumentation and Detectors, ed. M. Iye & A. F. Acknowledgements. This research has been supported by Project No. 15345/PI/10fromtheFundaciónSénecaandtheSpanishMinistryofEconomy Moorwood,623–631 Chabrier,G.&Baraffe,I.1997,A&A,327,1039 andCompetitiveness(MINECO)underthegrantsAYA2015-69350-C3-2-Pand Chabrier,G.,Baraffe,I.,Allard,F.,&Hauschildt,P.2000,ApJ,542,464 AYA2015-69350-C3-3-P.ThisworkisbasedonobservationsmadewiththeGran Chiu,K.,Fan,X.,Leggett,S.K.,etal.2006,AJ,131,2722 Telescopio Canarias (GTC), operated on the island of La Palma at the Span- Cruz,K.L.,Kirkpatrick,J.D.,&Burgasser,A.J.2009,AJ,137,3345 ish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica Cruz,K.L.,Reid,I.N.,Kirkpatrick,J.D.,etal.2007,AJ,133,439 de Canarias (programme GTC37-15A led by Pérez Garrido and programmes Cutri, R. M., Skrutskie, M. F., van Dyk, S., et al. 2003, VizieR Online Data GTC51–14BandGTC38-15AledbyLodieu).Thisresearchhasmadeuseof Catalog,2246,0 datafromtheUKIDSSprojectdefinedinLawrenceetal.(2007).UKIDSSuses Dahn,C.C.,Harris,H.C.,Vrba,F.J.,etal.2002,AJ,124,1170 theUKIRTWideFieldCamera(WFCAM;Casalietal.2007).Thephotomet- deBruijne,J.H.J.,Hoogerwerf,R.,&deZeeuw,P.T.2001,A&A,367,111 ricsystemisdescribedinHewettetal.(2006),andthecalibrationisdescribed Detweiler,H.L.,Yoss,K.M.,Radick,R.R.,&Becker,S.A.1984,AJ,89,1038 inHodgkinetal.(2009).Thepipelineprocessingandsciencearchivearede- Drilling,J.S.,Jeffery,C.S.,Heber,U.,Moehler,S.,&Napiwotzki,R.2013, scribedinIrwinetal(2009,inprep.)andHamblyetal.(2008).Thispublication A&A,551,A31 makes use of data products from the Two Micron All Sky Survey (2MASS), Dupuy,T.J.&Liu,M.C.2012,ApJS,201,19 whichisajointprojectoftheUniversityofMassachusettsandtheInfraredPro- Eggen,O.J.1998,AJ,116,284 cessingandAnalysisCenter/CaliforniaInstituteofTechnology,fundedbythe EROSCollaboration,Goldman,B.,Delfosse,X.,etal.1999,A&A,351,L5 NationalAeronauticsandSpaceAdministrationandtheNationalScienceFoun- Faherty,J.K.,Beletsky,Y.,Burgasser,A.J.,etal.2014,ApJ,790,90 dation.ThispublicationmakesuseofdataproductsfromtheWide-fieldInfrared Fan,X.,Knapp,G.R.,Strauss,M.A.,etal.2000,AJ,119,928 SurveyExplorer,whichisajointprojectoftheUniversityofCalifornia,Los Feiden,G.A.,Jones,J.,&Chaboyer,B.2015,inCambridgeWorkshoponCool Angeles,andtheJetPropulsionLaboratory/CaliforniaInstituteofTechnology, Stars,StellarSystems,andtheSun,Vol.18,18thCambridgeWorkshopon fundedbytheNationalAeronauticsandSpaceAdministration.Datafromthe CoolStars,StellarSystems,andtheSun,ed.G.T.vanBelle&H.C.Harris, SloanDigitalSkySurveyIVhasbeenemployedinthework.Fundingforthe 171–176 SloanDigitalSkySurveyIVhasbeenprovidedbytheAlfredP.SloanFoun- Gagné,J.,Faherty,J.K.,Cruz,K.L.,etal.2015,ApJS,219,33 dation,theU.S.DepartmentofEnergyOfficeofScience,andtheParticipating Geballe,T.R.,Knapp,G.R.,Leggett,S.K.,etal.2002,ApJ,564,466 Institutions.SDSS-IVacknowledgessupportandresourcesfromtheCenterfor Gebran,M.,Vick,M.,Monier,R.,&Fossati,L.2010,A&A,523,A71 High-PerformanceComputingattheUniversityofUtah.TheSDSSwebsiteis Gizis,J.E.2002,ApJ,575,484 www.sdss.org.SDSS-IVismanagedbytheAstrophysicalResearchConsortium Goldman,B.,Röser,S.,Schilbach,E.,etal.2013,A&A,559,A43 fortheParticipatingInstitutionsoftheSDSSCollaborationincludingtheBrazil- Golimowski,D.A.,Leggett,S.K.,Marley,M.S.,etal.2004,AJ,127,3516 ianParticipationGroup,theCarnegieInstitutionforScience,CarnegieMellon Hall,P.B.2002a,ApJ,580,L77 University, the Chilean Participation Group, the French Participation Group, Hall,P.B.2002b,ApJ,580,L77 Harvard-Smithsonian Center for Astrophysics, Instituto de Astrofísica de Ca- Hambly,N.C.,Collins,R.S.,Cross,N.J.G.,etal.2008,MNRAS,384,637 narias,TheJohnsHopkinsUniversity,KavliInstituteforthePhysicsandMath- Harrington,R.S.&Dahn,C.C.1980,AJ,85,454 ematicsoftheUniverse(IPMU)/UniversityofTokyo,LawrenceBerkeleyNa- Henry,T.J.,Jao,W.-C.,Subasavage,J.P.,etal.2006,AJ,132,2360 tionalLaboratory,LeibnizInstitutfürAstrophysikPotsdam(AIP),Max-Planck- Hewett,P.C.,Warren,S.J.,Leggett,S.K.,&Hodgkin,S.T.2006,MNRAS, InstitutfürAstronomie(MPIAHeidelberg),Max-Planck-InstitutfürAstrophysik 367,454 Articlenumber,page8of9 PérezGarridoetal.:AnewL5memberoftheHyades Hodgkin,S.T.,Irwin,M.J.,Hewett,P.C.,&Warren,S.J.2009,MNRAS,394, 675 Høg,E.,Fabricius,C.,Makarov,V.V.,etal.2000,A&A,355,L27 Hogan,E.,Jameson,R.F.,Casewell,S.L.,Osbourne,S.L.,&Hambly,N.C. 2008,MNRAS,388,495 Kirkpatrick,J.D.,Cruz,K.L.,Barman,T.S.,etal.2008,ApJ,689,1295 Kirkpatrick,J.D.,Dahn,C.C.,Monet,D.G.,etal.2001,AJ,121,3235 Kirkpatrick,J.D.,Reid,I.N.,Liebert,J.,etal.1999,ApJ,519,802 Kirkpatrick,J.D.,Reid,I.N.,Liebert,J.,etal.2000,AJ,120,447 Knapp,G.R.,Leggett,S.K.,Fan,X.,etal.2004,AJ,127,3553 Landolt,A.U.&Uomoto,A.K.2007,AJ,133,768 Lawrence,A.,Warren,S.J.,Almaini,O.,etal.2007,MNRAS,379,1599 Leggett,S.K.,Golimowski,D.A.,Fan,X.,etal.2002,ApJ,564,452 Lépine,S.&Shara,M.M.2005,AJ,129,1483 Liebert,J.,Kirkpatrick,J.D.,Cruz,K.L.,etal.2003,AJ,125,343 Liu,M.C.,Dupuy,T.J.,&Allers,K.N.2016,ApJ,833,96 Lodieu,N.,Boudreault,S.,&Béjar,V.J.S.2014,MNRAS,445,3908 Lodieu,N.,Hambly,N.C.,Jameson,R.F.,etal.2007,MNRAS,374,372 Lodieu,N.,ZapateroOsorio,M.R.,Rebolo,R.,etal.2015,A&A,581,A73 Lucas,P.W.,Hoare,M.G.,Longmore,A.,etal.2008,MNRAS,391,136 Luhman,K.L.2012,ARA&A,50,65 Luhman,K.L.2013,ApJ,767,L1 Madsen,S.,Dravins,D.,&Lindegren,L.2002,A&A,381,446 Magazzu,A.,Martin,E.L.,&Rebolo,R.1993,ApJ,404,L17 Mermilliod,J.C.1981,A&A,97,235 Monet,D.G.,Levine,S.E.,Canzian,B.,etal.2003,AJ,125,984 Perryman,M.A.C.,Brown,A.G.A.,Lebreton,Y.,etal.1998,A&A,331,81 Pineda, J. S., Hallinan, G., Kirkpatrick, J. D., et al. 2016, ArXiv e-prints [arXiv:1604.03941] Rebolo,R.,Martin,E.L.,&Magazzu,A.1992,ApJ,389,L83 Reid,I.N.,Kirkpatrick,J.D.,Gizis,J.E.,etal.2000,AJ,119,369 Reiners,A.&Basri,G.2008,ApJ,684,1390 Sanders,W.L.1971,A&A,14,226 Schmidt,S.J.,Cruz,K.L.,Bongiorno,B.J.,Liebert,J.,&Reid,I.N.2007,AJ, 133,2258 Schmidt,S.J.,Hawley,S.L.,West,A.A.,etal.2015,AJ,149,158 Schmidt,S.J.,West,A.A.,Bochanski,J.J.,Hawley,S.L.,&Kielty,C.2014, PASP,126,642 Schmidt,S.J.,West,A.A.,Hawley,S.L.,&Pineda,J.S.2010,AJ,139,1808 Siess,L.,Dufour,E.,&Forestini,M.2000,A&A,358,593 Sion,E.M.,Holberg,J.B.,Oswalt,T.D.,McCook,G.P.,&Wasatonic,R.2009, AJ,138,1681 Skrutskie,M.F.,Cutri,R.M.,Stiening,R.,etal.2006,AJ,131,1163 Smart,R.L.&Nicastro,L.2014,A&A,570,A87 Tody,D.1986,inProc.SPIE,Vol.627,InstrumentationinastronomyVI,ed. D.L.Crawford,733 Tody,D.1993,inAstronomicalSocietyofthePacificConferenceSeries,Vol.52, Astronomical Data Analysis Software and Systems II, ed. R. J. Hanisch, R.J.V.Brissenden,&J.Barnes,173 vanLeeuwen,F.2007,A&A,474,653 vanLeeuwen,F.2009,A&A,497,209 Vrba,F.J.,Henden,A.A.,Luginbuhl,C.B.,etal.2004,AJ,127,2948 Wright,E.L.,Eisenhardt,P.R.M.,Mainzer,A.K.,etal.2010,AJ,140,1868 York,D.G.,Adelman,J.,Anderson,Jr.,J.E.,etal.2000,AJ,120,1579 ZapateroOsorio,M.R.,Béjar,V.J.S.,Miles-Páez,P.A.,etal.2014,A&A,568, A6 ZapateroOsorio,M.R.,Lane,B.F.,Pavlenko,Y.,etal.2004,ApJ,615,958 Articlenumber,page9of9

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.