ebook img

A new class of actuator surface models for wind turbines PDF

4.4 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A new class of actuator surface models for wind turbines

WINDENERGY WindEnerg.2017;00:1–17 DOI:10.1002/we RESEARCHARTICLE A new class of actuator surface models for wind turbines XiaoleiYang1,FotisSotiropoulos1 7 1DepartmentofCivilEngineering,CollegeofEngineeringandAppliedSciences,StonyBrookUniversity,StonyBrook,NY11794, 1 USA 0 2 n a ABSTRACT J 2 Actuatorlinemodel hasbeenwidelyemployed inwindturbinesimulations.However, thestandardactuator linemodel 1 doesnotincludeamodelfortheturbinenacellewhichcansignificantlyimpactturbinewakecharacteristicsasshownin theliterature(e.g.Kang, YangandSotiropoulos,Journal ofFluidMechanics 744(2014): 376-403; Violaetal.,Journal ] ofFluidMechanics750(2014):R1;Fotietal.,PhysicalReviewFluids1(2016),044407). Anotherdisadvantageofthe n y standardactuatorlinemodel isthatmoregeometrical featuresofturbinebladescannot beresolvedonafinermesh.To d alleviatethesedisadvantagesofthestandardmodel,wedevelopanewclassofactuatorsurfacemodelsforturbineblades - andnacelletotakeintoaccount moregeometrical detailsof turbinebladesand includetheeffect of turbinenacelle. In u theactuator surfacemodel forblade, theaerodynamic forcescalculated usingthebladeelement methodaredistributed l f from the surface formed by the foil chords at different radial locations. In the actuator surface model for nacelle, the . s forcesaredistributedfromtheactualnacellesurfacewiththenormalforcecomponent computedinthesamewayasin c thedirectforcingimmersedboundary methodandthetangentialforcecomponent computedusingafrictioncoefficient i s andareferencevelocityoftheincomingflow.Theactuatorsurfacemodelfornacelleisevaluatedbysimulatingtheflow y over periodically placed nacelles. Boththe actuator surface simulation and thewall-resolved large-eddy simulation are h carriedout.Thecomparisonshowsthattheactuatorsurfacemodelisabletogiveacceptableresultsespeciallyatfarwake p locationsonaverycoarsemesh.Thecapabilityoftheactuatorsurfacemodelinpredictingturbinewakesisassessedby [ simulatingtheflowovertheMEXICO(ModelexperimentsinControlledConditions)turbineandthehydrokineticturbine 1 ofKang,YangandSotiropoulos(JournalofFluidMechanics744(2014):376-403).Comparisonsofthecomputedresults v withmeasurementsshowthattheproposedactuatorsurfacemodelisabletopredictthetipvortices,turbulencestatistics 8 andmeanderingofturbinewakewithgoodaccuracy.Copyright(cid:13)c 2017JohnWiley&Sons,Ltd. 0 1 KEYWORDS 2 Turbineparameterization;Nacellemodel;Wakemeandering 0 Correspondence . 2 FotisSotiropoulos,DepartmentofCivilEngineering,CollegeofEngineeringandAppliedSciences,StonyBrookUniversity,Stony 0 Brook,NY11794,USA 7 Emailaddress:[email protected]. 1 : Received... v i X r a 1. INTRODUCTION Usingthecurrentstate-of-the-artsupercomputers, itisstillimpossibletosimulatewindfarmsresolvingalltherelevant lengthscalesfromthethicknessoftheboundarylayeroverawindturbineblade(≈0.016mestimatedusingtheequation δ/c=0.37(U c/ν)−0.2[1]withν =1.5×10−5m2/s,andairfoilchordc=1mandU =100m/satthebladetip ∞ ∞ foraMWscalewindturbinewithrotordiameterapproximately100m,tipspeedratio10andincomingwindspeed10 m/s)tothethicknessofanatmosphericboundarylayer(≈1000m[2]).Differentrotormodelsincludingtheactuatordisk model[3,4,5],theactuatorlinemodel[6,7]andtheactuatorsurfacemodel[8]havebeendevelopedintheliteratureto parametrizetheinteractionbetweentheturbinebladesandtheincomingflowwithoutdirectlyresolvingtheboundarylayer flowoverturbineblades. Intheactuatordiskmodel[9]thewindturbinerotorismodelledbyacircularpermeabledisk.Theimpactsofincoming windonwindturbinesaretakenintoaccountbyuniformlydistributedforcesonthedisk.Intheconventionalactuatordisk Copyright(cid:13)c 2017JohnWiley&Sons,Ltd. 1 Preparedusingweauth.cls[Version:2010/06/17v1.00] Anewclassofactuatorsurfacemodelsforwindturbines XiaoleiYangandFotisSotiropoulos model,theforcesareonlyappliedalongtheturbineaxialdirection,whichcanbecalculatedeitherfromone-dimensional momentumtheorywithaprescribedinductionfactor[3]orfromtheblade-elementmomentumtheory[10].Intheworkby WuandPorte´-Agel[11],therotationwastakenintoaccountintheactuatordiskmodel.Itwasfoundthatthepredictions fromtheactuatordiskmodelwithrotationshowbetteragreementwiththewindtunnelmeasurementsreportedin[12]. Theactuatorlinemodelprovidesamoreaccurateapproachtoincorporatetherotationaleffect,finitebladenumbereffect andtheeffectofnon-uniformforcedistributionintheazimuthaldirection.Inthismodel,theturbinebladeisrepresented byarotatinglinewithdistributedforces,whicharecalculatedfromabladeelementapproach[13]combinedwithtabulated dragandliftcoefficientsofthefoils.Theemployeddragandliftcoefficientsareusuallyfromtwo-dimensionalnumerical simulationsorexperimentswithoutconsideringtherotationaleffects.Inordertotakeintoaccountthethree-dimensional rotational effects, corrections on the two-dimensional force coefficients, such as those proposed in [14], are usually employed. As discussed by Shen et al. [15], the lift needs to approach zero as the blade tip is approached. However, theliftonthetippredictedbythebladeelementapproachisusuallynotzeroespeciallyforapitchedbladeorachambered foil.Atip-losscorrectioninadditiontothecorrectionforthethree-dimensionaleffectisneededinordertohaveacorrect liftdistributionintheregionnearthebladetipassuggested byShenetal.[16].Therearetwomajorlimitationsof the standardactuatorlinemodel:(i)thelackofaneffectivenacellemodel,and(ii)thefactthatafinermeshcannotresolvemore geometricalfeaturesoftheturbineblade.Nacelleinducedcoherentstructureswereshowntohaveasignificantimpacton turbinewakecharacteristics,suchasvelocitydeficitinthenearwake[17,7,18]andwakemeanderingatfarwakelocations formodelwindturbines[19,20,21]andhydrokineticturbines[17].Bothgeometry-resolving,wall-modelledlarge-eddy simulations and actuator type large-eddy simulations were carried out in [17]. It is shown that the actuator line model withoutanacellemodelcannotaccuratelycapturethewakemeanderingofthehydrokineticturbine,andunderpredictsthe turbulenceintensityatfar wake locations. Thiswasattributedtothefact that thepresence of thenacelleinduces spiral vortexbreakdown of thehubvortexcausing alarge-scaleenergeticcoherent vortexthatprecessesand expands radially outwardtointercept andenergizethetipshearlayeratthreetofourrotordiametersdownwindoftheturbine[17].The nacellecanberepresentedusingapermeablediskwithaspecifieddragcoefficient.However,Yangetal.[7]showedthat such a simple nacelle model is not able to take into account the nacelle effect accurately. The computed results from Tossasetal.[18]indicatedthatwiththeirnacelleandtowermodelthevelocitydeficitinthenearwakeispredictedmore accurately.Theimprovementonthepredictionoftheturbulenceintensity,ontheotherhand,isverylimited.Theresultsof Yangetal.[7]alsoshowedthatgrid-independentresultscannotbeobtainedwhenthemeshisrefinedintheactuatorline modelsimulations. Inorder to alleviate the above mentioned limitations of the actuator linemodel, we develop a new classof actuator surface models for turbine blade and nacelle for taking into account the nacelle geometry and better incorporating the geometricaleffectoftheturbineblade.Intheactuatorsurfacemodelforblade,theforcesarestillcomputedusingtheblade elementmethodbutaredistributedonthesurfaceformedbythefoilchordsatdifferentradiallocations.Intheactuator surfacemodelforthenacelle,thenormalforcesarecomputedbysatisfyingthenon-penetrationboundaryconditionsasin thedirectforcingimmersedboundarymethod[22,23,24].Thetangentialforces,ontheotherhand,arecalculatedusing africtioncoefficientandareferencevelocityoftheincomingflow.Moredetailsontheproposedactuatorsurfacemodels arepresentedinSec.2followedbyabriefdescriptionofthegoverningequationsandflowsolverinSec.3.Somecases forvalidatingtheproposedactuatorsurfacemodelarethenreportedinSec.4.Finally,conclusionsaredrawninSec.5. 2. ACTUATORSURFACEMODELS Inthissection,wepresenttheproposedactuatorsurfacemodelsforthebladeandnacelle.Inbothactuatorsurfacemodels, wehavetwosetsofindependentmeshes,i.e.,thebackgroundCartesiangridfortheflowwithitscoordinatedenotedby x(x,y,z orx ,x ,x ),andtheLagrangiangridfollowingtheactuatorsurfaceswithitscoordinatedenotedbyX(X, 1 2 3 Y,Z orX ,X ,X ).Forbothmodels,thesmootheddiscretedeltafunctionin[24]isemployedasthekernelfunction 1 2 3 fortransferringinformationbetweenthetwomeshes.Themajordifferencebetweentheactuatorsurfacemodelforblade andtheactuatorsurfacemodelfornacelleisthewayhowtheforcesontheactuatorsurfacesarecalculated.InSec.2.1we presenttheforcecalculationanddistributionmethodsoftheactuatorsurfacemodelforblade.AndinSec.2.2weintroduce theforcescalculationmethodfortheactuatorsurfacemodelfornacelle. 2.1. Actuatorsurfacemodelforblade Intheactuatorsurfacemodelforblade,thebladegeometryisrepresentedbyasurfaceformedbythechordlinesatdifferent radiallocationsofabladeasshowninFig.1(a).Theforcesarecalculatedinthesamewayasintheactuatorlinemodel. Thelift(L)anddrag(D)ateachradiallocationarecalculatedby 1 L= ρC c|V |2e (1) 2 L rel L 2 WindEnerg.2017;00:1–17(cid:13)c 2017JohnWiley&Sons,Ltd. DOI:10.1002/we Preparedusingweauth.cls XiaoleiYangandFotisSotiropoulos Anewclassofactuatorsurfacemodelsforwindturbines Figure1.Aschematicoftheactuatorsurfacemodelforblade.Theliftanddragforcescalculatedusingthebladeelementmethodare distributedovertheactuatorsurfaceformedbychordlinesofablade. and 1 D= ρC c|V |2e , (2) 2 D rel D whereC andC aretheliftanddragcoefficients,cisthechordlength,V istherelativeincomingvelocity,ande L D rel L ande aretheunitvectorsinthedirectionsofliftanddrag,respectively.TheC andC arefunctionsoftheReynolds D L D numberandtheangleofattack.TheangleofattackαshowninFig.1(b)iscomputedateachradiallocationby α=φ−γ, (3) whereφ=−tan−1(u /(u −Ωr)),andγistheangleincludingthebladetwistandthebladepitch,thelatterofwhich x θ isspecifiedtoagivenvalueinsteadoffromaturbinecontrolalgorithm.TherelativeincomingvelocityV ateachradial rel locationiscomputedby V =u e +(u −Ωr)e , (4) rel x x θ θ whereΩistherotationalspeedoftherotor,e ande aretheunitvectorsintheaxialandazimuthaldirections,respectively. x θ The u and u are the axial and azimuthal components of the flow velocity averaged over the chord for each radial x θ locations,whicharecomputedusing 1 u = u(X)·e ds (5) x c x Zc and 1 u = u(X)·e ds, (6) θ c θ Zc where X denote the coordinates of the grid points on the actuator surfaces. Generally the grid points on the actuator surfacesdonot coincidewithany background nodes. Weemploy asmoothed discretedeltafunction(i.e.thesmoothed four-point cosine function) proposed by Yang et al. [24] to interpolate u(X) from the values on the background grid nodesasfollows: u(X)= u(x)δ (x−X)V(x), (7) h xX∈gx wherexarethecoordinatesofthebackgroundgridnodes,gx isthesetofthebackgroundgridcells,V =hxhyhz (hx, h and h are the grid spacings in the x, y and z directions, respectively) is the volume of the background grid cell, y z δ (x−X)= 1φ x−X φ y−Y φ z−Z is the discrete delta function, and φ is the smoothed four-point cosine h V hx hy hz function[24],which(cid:16)isexp(cid:17)ress(cid:16)edas (cid:17) (cid:16) (cid:17) 1 + sin(π(2|r|+1)/4) − sin(π(2|r|−1)/4), |r|≤1.5, 4 2π 2π φ(r)= 5 − |r| − sin(π(2|r|−1)/4), 1.5≤|r|≤2.5, (8)  8 4 2π  0, 2.5≤|r|,  WindEnerg.2017;00:1–17(cid:13)c 2017JohnWiley&Sons,Ltd. 3 DOI:10.1002/we Preparedusingweauth.cls Anewclassofactuatorsurfacemodelsforwindturbines XiaoleiYangandFotisSotiropoulos inwhichr =(x −X )/h (i=1,2,3). i i i i The blade rotation causes the stall delay phenomenon at the inboard sections of the blade, which increases the lift coefficients and decreases the drag coefficients as compared with the corresponding two-dimensional airfoil data. To accountforsuchthree-dimensionalrotationaleffect,thestalldelaymodeldevelopedbyDuandSelig[25]isemployedto correcttheliftanddragcoefficientsfromtwo-dimensionalexperimentsornumericalsimulations.InDuandSelig’smodel, thecorrectedliftanddragcoefficients(C andC )arecalculatedasfollows: L,3D D,3D C =C +f (C −C ), (9) L,3D L,2D L L,p L,2D and C =C −f (C −C ), (10) D,3D D,2D D D,2D D,0 whereC =2π(α−α ),C thetwo-dimensionaldragcoefficientatzeroangleofattack,andthecorrectionfunctions L,p 0 D,0 f andf aredeterminedby L D dR 1 1.6(c/r)a−(c/r)Λ r f = −1 , (11) L 2π 0.1267b+(c/r)ΛdRr ! and d R 1 1.6(c/r)a−(c/r)2Λ r f = −1 , (12) D 2π 0.1267b+(c/r)2dΛRr ! respectively,whereΛ=ΩR/ V2+(ΩR)2,Ristherotorradius,a,banddaretheempiricalcorrectionfactors.Inthis w work,a,banddareequalto1asinDuandSelig’spaper[25]. p Non-zeroforcecanexistatthebladetipwhenthepitchangleisnonzeroorachamberedfoilisused[15].Thisisin contradictionwiththephysicalunderstandingthattheforceshouldtendtozeroatthetipduetopressureequalizationas discussed byShenet al.[15].Tocorrect thisnon-physical forcebehaviour, thetip-losscorrection proposed by Shenet al.[16,15]isappliedtothedragandliftcoefficientscomputedfromEqs.(9)and(10).Withthetiplosscorrection,the employedC andC arecalculatedas D L C =F C , (13) L 1 L,3D and C =F C , (14) D 1 D,3D where 2 B(R−r) F = cos−1 exp −g , (15) 1 π 2rsinφ (cid:18) (cid:18) (cid:19)(cid:19) inwhichBisthenumberofblades,giscomputedby g=exp(−c (BΩR/U −c ))+c , (16) 1 ∞ 2 3 wherec ,c andc arethecorrectioncoefficients,whichareequalto0.125,21and0.1asin[16],respectively. 1 2 3 Aftercalculatingthelift(L)anddrag(D),theforceperunitareaontheactuatorsurfaceateachradiallocationisthen calculatedas f(X)=(L+D)/c. (17) Note that the above expression essentially means that the lift and drag on the blade are uniformly distributed in the chordwisedirection.Tocalculatetheforcesonthebackgroundmeshfortheflowfield,thecomputedforcesontheactuator surfacesarethendistributedtothebackgroundgridnodesasfollows: f(x)=− f(X)δ (x−X)A(X), (18) h XX∈gX wheregXisthesetoftheactuatorsurfacegridcellsandAistheareaoftheactuatorsurfacegridcell.Thesamediscrete delta function as in Eq. (7) is employed. It is noted the negative sign is because that f(x) represents the forces of the actuatorsurfacesactingontheflow,whilef(X)denotestheforcesoftheflowactingontheactuatorsurfaces. 4 WindEnerg.2017;00:1–17(cid:13)c 2017JohnWiley&Sons,Ltd. DOI:10.1002/we Preparedusingweauth.cls XiaoleiYangandFotisSotiropoulos Anewclassofactuatorsurfacemodelsforwindturbines Figure2.Aschematicoftheactuatorsurfacemodelfornacelle.Asshownin(a),thenormalforcefn attheLagrangianpointA iscomputedbyEq.(19)withtheestimatedvelocityu˜(X)atpointAinterpolatedfromthesurroundingCartesiangridnodesusing Eq.(7).Themagnitudeofthetangentialforcefτ iscomputedbyEq.(21)usingtheincomingstreamwisevelocityU andafriction coefficientgivenbyEq.(22).ThedirectionofthetangentialforceisassumedtobethesameasthetangentialvelocityatpointB, whichisinterpolatedfromthesurroundingCartesiangridnodesusingEq.(7).Thecomputedforcesaredistributedtothesurrounding Cartesiangridnodes(thegrayareashownin(a))usingEq.(18). 2.2. Actuatorsurfacemodelfornacelle Resolvingtheboundarylayeroveranacelleofanutilityscalewindturbine,whichbecomesalmostimpossibleforwind farmscalesimulations,requiresamuchfinermeshascomparedwiththemeshforresolvingthethicknessofanatmospheric boundarylayer.Totakeintoaccountthenacelleeffectsonarelativelycoarsemesh,inthissectionwepresentanactuator surfacemodelforparametrizingthenacelleeffectwithoutdirectlysimulatingtheboundarylayerflowsoverthenacelle. Inthismodel,thenacellegeometryisrepresentedbytheactualsurfaceofthenacellewithdistributedforces.Asshown inFig.2,theforceactingontheactuatorsurfaceisdecomposedintothenormalcomponentandthetangentialcomponent. Fromaphysicalpointofview,theactuatorsurfaceofthenacellecannotactasasinkorsourceofmassnotmatterhow theboundarylayeroverthenacelleismodelled.Basedonthisconsideration,thenormalcomponent oftheforceonthe actuatorsurfaceiscomputedbysatisfyingthenon-penetrationconstraint.Thenon-penetrationconstraintcanbemetby directly reconstructing the wall-normal velocity near the actuator surface as in the sharp interface immersed boundary method[22,26,27,28].However,aphysicallyreasonableinterpolationschemeisdifficulttoimplementbecauseofthe verycoarsegirdemployedintheactuatortypesimulations.Moreoverdirectvelocityreconstructioncannotensureasmooth representationofthenacellegeometrybecauseoftheverycoarsegrid.Inthisworkwerepresentthenacellegeometryasa diffusedinterfacethesameasinthedirectforcingimmersedboundarymethod[23,24,29].Inthisactuatorsurfacemodel fornacelle,thenormalcomponentoftheforceactingonthesurfaceperunitareaiscalculatedinthesamewayasinthe directforcingimmersedboundarymethod,whichisexpressedasfollows: h −ud(X)+u˜(X) ·e (X) f (X)= n e (X), (19) n ∆t n (cid:0) (cid:1) whereud(X)isthedesiredvelocityonthenacellesurface,e (X)istheunitvectorinthenormaldirectionofthenacelle n surface,h=(h h h )1/3isthelengthscaleofthelocalbackgroundgridspacing(differentvaluesofhhavebeentested x y z withoutnoticinganysignificantdifferences),u˜(X)istheestimatedvelocityontheactuatorsurface,whichisinterpolated fromthecorrespondingestimatedvelocityonthebackgroundmeshusingEq.(7)withtheu˜(x)onthebackgroundmesh computedas u˜(x)=un(x)+rhsn(x)∆t, (20) where∆tisthesizeofthetimestep,theright-hand-sidetermrhsnincludestheconvection,pressuregradientanddiffusion termscomputedfromthequantitiesofprevioustimestepn. Thetangential force acting on the surface depends on the incoming velocity, the surface geometry and the complex near-wallturbulence.Neitherofthelasttwocanbedirectlycapturedintheactuatortypesimulationsbyusingtheno-slip boundaryconditionsortheshearstressboundaryconditionsforwallmodels[30,31].Inthepresentactuatorsurfacemodel, weassumethatthetangentialforceisproportionaltothelocalincomingvelocity,andtheeffectsofsurfacegeometryand near-wallturbulencecanbeparameterizedusingasingleparameter,thefrictioncoefficientc .Basedonthisassumption, f thetangentialforceactingonthesurfaceperunitareaiscomputedas 1 f (X)= c U2e (X) (21) τ 2 f τ WindEnerg.2017;00:1–17(cid:13)c 2017JohnWiley&Sons,Ltd. 5 DOI:10.1002/we Preparedusingweauth.cls Anewclassofactuatorsurfacemodelsforwindturbines XiaoleiYangandFotisSotiropoulos wherec iscalculatedfromtheempiricalrelationproposedbyF.Schultz-Grunow[1]forturbulentboundarylayerswith f zeropressuregradient,whichisexpressedasfollows: c =0.37(logRe )−2.584, (22) f x where Re is the Reynolds number based on the incoming velocity and the distance from the upstream edge of the x immersedbody.Itisnoticedthatthisexpressionisinvalidfortheregionwithalargepressuregradient.Forthepresent nacellesimulation,however,zeropressuregradientcanberegardedasareasonableassumptionforthemostpartofthe turbine nacelle. The framework presented in this work is applicable to more complex geometries if the corresponding distributionofc isavailablefromexperimentsorhighfidelitysimulations.InEq.(21),U isthereferencevelocityofthe f incomingflow.Inthepresentwork,itisselectedasthemagnitudeoftheincomingstreamwisevelocity.Thedirectionof thetangentialforcee (X),ontheotherhand,isdeterminedbythelocaltangentialvelocityrelativetothevelocityatthe τ nacellesurfaceatpointslocatedathawayfromthewall,i.e.,pointBinFig.2,asfollows: |u(X+he (X))| e (X)= n . (23) τ u(X+he (X)) n Aftercomputing theforcesontheactuator surface ofthenacelle,theforcesonthebackground mesharedistributed fromtheactuatorsurfacemeshinthesamewayasinEq.(18).Itisnotedthattheforcesaredistributedovertheclosest fivecellsdefinedbythewidthoftheemployedsmoothedcosinediscretedeltafunction.Thisforcedistributionwidthwill beverysmallifwehaveasufficientlyhighgridresolutiontoresolvetheboundarylayer.Forthegridsusingintheactuator typesimulations,however,thisforcedistributionwidthissolargethatitmaycausenon-physicalvelocityfieldnearthe nacelleandaffectthecalculationoftherelativeincomingvelocityfortheblade.Toremedythisproblem,wesimplyletthe relativeincomingvelocity(V inEq.(4))ofthetwoclosestradiallocationstothenacellesurfacebeequaltothatofthe rel thirdclosestlocationawayfromthenacelle. 3. FLOWSOLVER The governing equations are the three-dimensional, unsteady, filtered continuity and Navier-Stokes equations in non-orthogonal, generalized, curvilinear coordinates, which read in compact tensor notation (repeated indices imply summation)asfollows(i,j =1,2,3): ∂Ui J =0, (24) ∂ξi 1 ∂Ui ξi ∂ µ ∂ gjk ∂u 1 ∂ ξjp 1∂τ = l − (Uju)+ l − ( l )− lj +f , (25) J ∂t J ∂ξj l ρ∂ξj (cid:18) J ∂ξk(cid:19) ρ∂ξj J ρ ∂ξj l! wherex andξiaretheCartesianandcurvilinearcoordinates,respectively,ξi =∂ξi/∂x arethetransformationmetrics, i l l J istheJacobianofthegeometrictransformation,u istheithcomponentofthevelocityvectorinCartesiancoordinates, i Ui=(ξi /J)u isthecontravariantvolumeflux,gjk =ξjξk arethecomponentsofthecontravariantmetrictensor,ρis m m l l thedensity,µisthedynamicviscosity,pisthepressure,f(l=1,2,3)arethebodyforcesintroducedbytheturbineblade l and nacelle computed using the actuator surface models presented in Sec. 2, and τ represents the anisotropic part of ij thesubgrid-scalestresstensor,whichismodelledbythedynamiceddyviscositysubgrid-scalestressmodel[32].Forthe discretizationandsolversoftheaboveequations,thereaderisreferredto[33,7]. 4. TESTCASES Inthissection,weevaluatetheperformanceoftheproposedactuatorsurfacemodelsforturbinebladeandnacelle.The nacellebodycaseinSec.4.1istoevaluatethecapabilityoftheactuatorsurfacemodelfornacelle.TheMEXICO(Model experiments in Controlled Conditions) turbine [34, 35, 36] case in Sec. 4.2 is to show the capability of the actuator surfacemodelsinpredictingthetipvorticesandvelocitydistributioninthenearwake.Thecapabilityofthenewactuator surfacemodelsonthewakemeanderingpredictionisdemonstratedbythehydrokineticturbinecaseinSec.4.3.Inturbine simulations the proposed actuator surface model is abbreviated as AS-BN when both the blade model and the nacelle modelareemployed,andAS-Bwhenonlytheblademodelisemployed. 6 WindEnerg.2017;00:1–17(cid:13)c 2017JohnWiley&Sons,Ltd. DOI:10.1002/we Preparedusingweauth.cls XiaoleiYangandFotisSotiropoulos Anewclassofactuatorsurfacemodelsforwindturbines Figure3.Schematicofthenacellegeometrywiththetriangularsurfacemesh.Theflowisfromlefttoright. 4.1. Flowoverperiodicplacednacelles In this section, the actuator surface model for nacelle is applied to simulate the flow over periodically placed nacelles tomimic windfarm scenarios. The nacelle body iscomposed of a hemisphere facing upstream and a circular cylinder in its downstream as shown in Fig. 3. Free-slip boundary condition is applied in the crosswise directions. Periodic boundary condition is employed in the streamwise direction. The Reynolds number based on the cylinder diameter D andthefreestreamvelocityis2000. Thesizeofthecomputational domainisL ×L ×L =30D×20D×20D,in x y z whichx,y andz represent thestreamwise,spanwiseandverticaldirections,respectively. .Thedownstreamendof the nacelle body is located at the origin of the streamwise coordinate. Two grids are employed: the number of grid nodes isN ×N ×N =502×348×348andN ×N ×N =153×80×80forthefineandcoarsegrids,respectively. x y z x y z Themesh isuniformintheregionaround thenacelle. Forthefinegrid, thegridspacing near the body isD/16 inthe streamwise direction and D/66 in the other two directions; while for the coarse grid, the grid spacing is D/5 in the streamwisedirection and D/10 in theother two directions. The employed timestep is0.01D/U and 0.1D/U for the finegridandcoarsegridsimulations,respectively. Large-eddysimulationwiththedynamicsubgrid-scalemodel[32]is employedfortheflowsimulation[33].Onthecoarsegrid,theactuatortypelarge-eddysimulationiscarriedoutusingthe proposed actuator surface model for nacelleparameterization. Onthefinegrid, the so-calledgeometry-resolving, wall- resolved large-eddy simulation is carried out with the sharp-interface immersed boundary method developed by Ge et al.[28]forresolvingtheboundarylayerandnearwallturbulence,fromwhichthecomputedresultsisemployedtogauge the performance of the proposed actuator surface model. It is noticed that two types of geometry-resolving large-eddy simulationshavebeenmentioned:thegeometry-resolving,wall-modeledlarge-eddysimulationasemployedin[17]and thegeometry-resolving,wall-resolvedlarge-eddysimulationemployedinthefinegridnacellesimulation. WeexaminetheaccuracyoftheactuatorsurfacemodelinFigs.4and5bycomparingthemodelpredictedtime-averaged streamwisevelocityhuiandturbulencekineticenergykprofileswiththosefromthefinegridwall-resolvedLESatdifferent downstreamlocations.AsseeninFig.4,thevelocitydeficitcomputedfromactuatorsurfacemodelagreeswellwiththat fromthewall-resolvedLESat1Ddownstream.At3D,5Dand7Ddownstreamlocations,however,thevelocitydeficits computedfromtheactuatorsurfacemodelaresignificantlylarger.Forfurtherdownstreamlocations,ontheotherhand,the velocitydeficitspredictedbytheactuatorsurfacemodelshowgoodagreement withthatcomputedbythewall-resolved LES.Similarwiththeobservationsonthevelocityprofiles,largediscrepanciesareobservedatnearwakelocationsforthe turbulentkineticenergyprofiles.AsshowninFig.5,notonlythemagnitudeoftheturbulencekineticenergybutalsothe shapeofthedistributioncomputedfromtheactuatorsurfacemodelaredifferentfromthewall-resolvedsimulationresults at near wake locations. At 1D downstream location, the peaks appear withinthe top and bottom shear layers for both actuatorsurfacesimulationandwall-resolvedLES.At3D,5D,7Dand9Ddownstreamlocations,ontheotherhand,the regionswithhighturbulencekineticenergyappearnearthecenterofthewakeforthewall-resolvedLES;whiletheystill existwithintheshearlayersfortheactuatorsurfacesimulation.Itisnoticedthattheturbulencekineticenergypredicted bythewall-resolvedLESissignificantlylargerthanthatfromtheactuatorsurfacesimulationat3Ddownstreamfromthe body.Turbulentfluctuationshelpwakerecovery.Thisexplainswhythevelocityrecoversfasterinthenearwakeregion for the wall-resolved LES. The actuator surface model, on the other hand, underpredicts the turbulence kinetic energy inthenearwakeandthusunderpredictsthewakerecoveryatthoselocations.Atfarwakelocations,ontheotherhand, theturbulencekineticenergypredictedbytheactuatorsurfacemodelisingoodagreementwiththepredictionsfromthe wall-resolvedLES. Tofurtherevaluatetheperformanceoftheactuatorsurfacemodel,thepowerspectraldensity(PSD)predictedbythe actuatorsurfacesimulationiscomparedwiththatfromthewall-resolvedLESatdifferentdownstreamlocationsinFig.6. Itisseenthelowfrequency,energy-containingpartofthePSDpredictedbytheactuatorsurfacemodelshowsanoverall goodagreementwiththewall-resolvedLES.Boththeactuatorsurfaceandwall-resolvedsimulationspredicttheinertial rangeofthePSDwiththeslopeof−5/3.Whiletheinertialrangecomputedbytheactuatormodelhasashorterwidth andstartsatlowerfrequenciesinthenearwakeregion.Thismakestheenergyathighfrequenciessignificantlysmaller fortheactuatorsurfacesimulationsatnearwakelocations.Atfarwakelocations,bothenergy-containingpartandinertial partofthePSDpredictedbytheactuatorsurfacemodelagreewellwiththatcomputedfromthewall-resolvedLES,even WindEnerg.2017;00:1–17(cid:13)c 2017JohnWiley&Sons,Ltd. 7 DOI:10.1002/we Preparedusingweauth.cls Anewclassofactuatorsurfacemodelsforwindturbines XiaoleiYangandFotisSotiropoulos Figure4.Verticalprofilesoftime-averagedstreamwisevelocityhuiatdifferentdownstreamlocationsforthenacellecase.Symbols: wall-resolvedLES;Solidlines:actuatorsurfacesimulation. Figure5.Verticalprofilesofturbulencekineticenergykatdifferentdownstreamlocationsforthenacellecase.Symbols:wall-resolved LES;Solidlines:actuatorsurfacesimulation. thoughtheveryhighfrequency,dissipationrangeisnotresolvedbytheverycoarsegridemployedintheactuatorsurface simulation. 8 WindEnerg.2017;00:1–17(cid:13)c 2017JohnWiley&Sons,Ltd. DOI:10.1002/we Preparedusingweauth.cls XiaoleiYangandFotisSotiropoulos Anewclassofactuatorsurfacemodelsforwindturbines Figure6.Powerspectraldensity(PSD)ofstreamwisevelocityfluctuationsatdifferentdownstreamlocationsforthenacellecase.Red solidlines:actuatorsurfacesimulation;Greendash-dotlines:wall-resolvedLES.Theblackdashedlineshowstheslopeof−5/3. 4.2. FlowovertheMEXICOturbine Inthissection,wesimulatetheflowovertheMEXICOturbinetoevaluatetheperformanceoftheproposedactuatorsurface modelsonpredictingthevelocityandtipvorticesatturbinenearwakelocations.Thesizeofthecomputational domain is L ×L ×L =4.2D×4D×4D, in which x, y and z represent the streamwise, spanwise, vertical directions, x y z respectively.Thenumber ofgridnodesisN ×N ×N =673×502×502.Themeshisuniformacrosstheturbine x y z andinthestreamwisedirectionwithgridspacingD/160,andisstretchedinthespanwiseandverticaldirectionsatregions awayfromtheturbine.ThesizeoftimestepisT/750,whereT isrotationalperiodoftheturbinerotor.Free-slipboundary condition is applied at the boundaries in the spanwise and vertical directions. The flow at the inlet is uniform. Three caseswiththreedifferenttipspeedratios(TSR=ΩR/U whereΩistherotationalspeedoftherotor,Ristheradiusof therotorandU istheincomingwindspeed), i.e.4.2,6.7and10,arecarriedout.Intheexperiment,differenttipspeed ratioswererealizedbyadjustingtheincomingwindspeed.IntheLES,ontheotherhand,differentrotationalspeedsare employedfordifferenttipspeedratios.TheReynoldsnumberbasedontheincomingwindspeedandtherotordiameteris Re=6.9×106thesameforthecaseswithdifferenttipspeedratios. Beforepresentingthecomputedresultsintheturbinenearwake,theboundcirculationsalongthebladepredictedby theactuatorsurfacemodelarecomparedwithmeasurementsinFig.7.TheboundcirculationiscomputedbyΓ= L . ρ|Vrel| As seen, the location with maximum bound circulation is located near the blade root for TSR=4.2, in the middle for TSR=6.7,whileclosetothetipforTSR=10.SuchdependenceoftheboundcirculationdistributionsonthevaluesofTSR iswellcapturedbytheproposedactuatorsurfacemodel.Theamplitudesofthepredictedboundcirculationalsoshowan acceptableagreementwiththemeasurementsexceptfortheTSR=10case,wherethediscrepanciesbetweenthecomputed valuesandmeasuredonesaresomewhatlargerthantheothertwocases. The capability of the proposed actuator surface model in predicting the tipvortices is examined in Fig. 8, in which weshowthecomparisonofthecomputedtipvortexcirculationswiththemeasurementsforthethreecaseswithdifferent tipspeedratios.Tocalculatethecirculationoftipvortices,thecenterofatipvortexcoreisselectedasthepositionwith themaximumvorticitymagnitude.Thecirculationiscomputedbyintegratingthevelocityalongacirclecenteredatthe vortex core center with radius of 0.05D. The computed tipvortex circulations show overall good agreements with the measurements.SomediscrepanciesareobservedfortheTSR=10caseforthethirdandthefourthtipvorticesdownwind fromtherotor.FromthecomparisonofthetipvortexcirculationsamongthethreeTSRcases,itisinterestingtonotice thattheyareinthesameorderwhennormalizedusingU andD,althoughthedimensionalcirculationsaresignificantly differentforthethreecases. WindEnerg.2017;00:1–17(cid:13)c 2017JohnWiley&Sons,Ltd. 9 DOI:10.1002/we Preparedusingweauth.cls Anewclassofactuatorsurfacemodelsforwindturbines XiaoleiYangandFotisSotiropoulos Figure 7.Bound circulation distributions along blade radial direction for (a) TSR=4.2, (b) TSR=6.7 and (c) TSR=10. Circles: measurements;Redsolidline:actuatorsurfacemodel. Figure8.Circulationoftipvorticesatdifferentdownwindlocationsfor(a)TSR=4.2,(b)TSR=6.7and(c)TSR=10.Blacklinewith circles:measurements;Redlinewithsquares:actuatorsurfacemodel. Thecomputedaxial(hu i)andradial(hu i)velocitiesarecomparedwithmeasurementsatdifferentradiallocationsin a r Fig.9.Asseen,theradialvelocityhu iincreasesastheflowapproachesturbine,anddecreasesrapidlyintheimmediate r downwindoftheturbineforallthefourconsideredradiallocationsforallthethreecases.Itisalsoseenthatsuchincrease of the radial velocity issomewhat larger when TSRis higher. From these comparisons, we can see that the developed actuatorsurfacemodelcanaccuratelypredictthedownwindvariationsofradialvelocity.Fortheaxialvelocity,asudden decrease and increase inthe near wake of the turbine areobserved at r/D=0.52 for all the threetip-speed ratiosfor themeasureddata.Thisis,however,becauseofthecorruptedPIVphotosattheselocationscausedbythelightreflected ontheturbinehubasnoticedinthepaper byNilssonetal.[36].TheexperimentaldatafromthecorruptedPIVimages willbeignoredforthecomparisons.Itisseenthatoverallgoodagreementswithmeasurementsareobtainedfortheaxial velocitiesalthoughsomediscrepanciesareobservedfortheTSR=10case. 4.3. Flowoverahydrokineticturbine Thecapabilityofthedevelopedactuatorsurfacemodelsinpredictingthewakemeanderingatfarwakelocationsisassessed bysimulatingtheturbulentflowovertheaxial-flowhydrokineticturbineatSaintAnthonyFallsLaboratory,Universityof Minnesota [37]. Kang, Yang and Sotiropoulos [17] carried out the geometry-resolving, actuator disk and actuator line simulationsofthisturbine.Itwasfoundthatthestandardactuatorlinemodelwithoutanacellemodelunderpredictsthe turbulenceintensityinthefarwakebecauseitcannotaccuratelycapturetheinner-outerwakeinteractionandthusthewake meanderinginthefarwake. The computational domain is L ×L ×L =16D×5.5D×2.3D in the streamwise, spanwise and vertical x y z directions, respectively, where D=0.5 m is the rotor diameter. Two different grids are employed: a coarse grid with the grid spacing D/50 and a fine grid with grid spacing D/100 around the turbine. The number of grid nodes is N ×N ×N =802×277×116, and 556×341×201 inthestreamwise, spanwise and vertical directions for the x y z coarseandfinegridsrespectively.Thetimestepis0.002D/U and0.001D/U,whereU=0.4m/sisthebulkvelocity,for 10 WindEnerg.2017;00:1–17(cid:13)c 2017JohnWiley&Sons,Ltd. DOI:10.1002/we Preparedusingweauth.cls

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.