ebook img

A Modern Introduction to Fuzzy Mathematics PDF

369 Pages·2020·4.863 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Modern Introduction to Fuzzy Mathematics

(cid:2) AModernIntroductiontoFuzzyMathematics (cid:2) (cid:2) (cid:2) (cid:2) A Modern Introduction to Fuzzy Mathematics Apostolos Syropoulos Theophanes Grammenos NewYork2020 (cid:2) (cid:2) (cid:2) (cid:2) Thiseditionfirstpublished2020 ©2020JohnWiley&Sons,Inc Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem, ortransmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingor otherwise,exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerial fromthistitleisavailableathttp://www.wiley.com/go/permissions. TherightofApostolosSyropoulosandTheophanesGrammenostobeidentifiedastheauthors ofthisworkhasbeenassertedinaccordancewithlaw. RegisteredOffice JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA EditorialOffice 111RiverStreet,Hoboken,NJ07030,USA Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWiley productsvisitusatwww.wiley.com. Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Some contentthatappearsinstandardprintversionsofthisbookmaynotbeavailableinother formats. LimitofLiability/DisclaimerofWarranty Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymake norepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsof thisworkandspecificallydisclaimallwarranties,includingwithoutlimitationanyimplied warrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedor extendedbysalesrepresentatives,writtensalesmaterialsorpromotionalstatementsforthis work.Thefactthatanorganization,website,orproductisreferredtointhisworkasacitation and/orpotentialsourceoffurtherinformationdoesnotmeanthatthepublisherandauthors (cid:2) (cid:2) endorsetheinformationorservicestheorganization,website,orproductmayprovideor recommendationsitmaymake.Thisworkissoldwiththeunderstandingthatthepublisheris notengagedinrenderingprofessionalservices.Theadviceandstrategiescontainedhereinmay notbesuitableforyoursituation.Youshouldconsultwithaspecialistwhereappropriate. Further,readersshouldbeawarethatwebsiteslistedinthisworkmayhavechangedor disappearedbetweenwhenthisworkwaswrittenandwhenitisread.Neitherthepublishernor authorsshallbeliableforanylossofprofitoranyothercommercialdamages,includingbutnot limitedtospecial,incidental,consequential,orotherdamages. LibraryofCongressCataloging-in-PublicationData Names:Syropoulos,Apostolos,author. Title:Amodernintroductiontofuzzymathematics/ApostolosSyropoulos, TheophanesGrammenos. Description:Firstedition.|NewYork:Wiley,2020.|Includes bibliographicalreferencesandindex. Identifiers:LCCN2020004300(print)|LCCN2020004301(ebook)|ISBN 9781119445289(cloth)|ISBN9781119445302(adobepdf)|ISBN 9781119445296(epub) Subjects:LCSH:Fuzzymathematics. Classification:LCCQA248.5.S972020(print)|LCCQA248.5(ebook)|DDC 511.3/13—dc23 LCrecordavailableathttps://lccn.loc.gov/2020004300 LCebookrecordavailableathttps://lccn.loc.gov/2020004301 CoverDesign:Wiley CoverImage:CourtesyofApostolosSyropoulos Setin9.5/12.5ptSTIXTwoTextbySPiGlobal,Chennai,India PrintedintheUnitedStatesofAmerica 10987654321 (cid:2) (cid:2) TomysonDemetrios-Georgios, TomywifeAndromacheforher toKoulaandLinda. endurance,tolerance,andcare. ApostolosSyropoulos TheophanesGrammenos (cid:2) (cid:2) (cid:2) (cid:2) vii Contents Preface xiii Acknowledgments xvii 1 Introduction 1 1.1 WhatIsVagueness? 1 1.2 Vagueness,Ambiguity,Uncertainty,etc. 4 1.3 VaguenessandFuzzyMathematics 6 Exercises 8 (cid:2) (cid:2) 2 FuzzySetsandTheirOperations 11 2.1 AlgebrasofTruthValues 11 2.1.1 Posets 12 2.1.2 Lattices 13 2.1.3 Frames 14 2.2 Zadeh’sFuzzySets 14 2.3 𝛼-CutsofFuzzySets 19 2.4 Interval-valuedandType2FuzzySets 21 2.5 TriangularNormsandConorms 24 2.6 L-fuzzySets 26 2.7 “Intuitionistic”FuzzySetsandTheirExtensions 27 2.8 TheExtensionPrinciple 32 2.9* Boolean-ValuedSets 34 2.10* AxiomaticFuzzySetTheory 36 Exercises 37 3 FuzzyNumbersandTheirArithmetic 39 3.1 FuzzyNumbers 39 3.1.1 TriangularFuzzyNumbers 40 3.1.2 TrapezoidalFuzzyNumbers 41 3.1.3 GaussianFuzzyNumbers 42 (cid:2) (cid:2) viii Contents 3.1.4 QuadraticFuzzyNumbers 43 3.1.5 ExponentialFuzzyNumbers 44 3.1.6 L–RFuzzyNumbers 44 3.1.7 GeneralizedFuzzyNumbers 46 3.2 ArithmeticofFuzzyNumbers 46 3.2.1 IntervalArithmetic 47 3.2.2 IntervalArithmeticand𝛼-Cuts 47 3.2.3 FuzzyArithmeticandtheExtensionPrinciple 48 3.2.4 FuzzyArithmeticofTriangularFuzzyNumbers 49 3.2.5 FuzzyArithmeticofGeneralizedFuzzyNumbers 49 3.2.6 ComparingFuzzyNumbers 51 3.3 LinguisticVariables 54 3.4 FuzzyEquations 55 3.4.1 SolvingtheFuzzyEquationA⋅X+B=C 55 3.4.1.1 TheClassicalMethod 55 3.4.1.2 TheExtensionPrincipleMethod 56 3.4.1.3 The𝛼-CutsMethod 58 3.4.2 SolvingtheFuzzyEquationA⋅X2+B⋅X+C=D 58 3.4.2.1 TheClassicalMethod 59 3.4.2.2 TheExtensionPrincipleMethod 59 (cid:2) (cid:2) 3.4.2.3 The𝛼-CutsMethod 60 3.5 FuzzyInequalities 60 3.6 ConstructingFuzzyNumbers 60 3.7 ApplicationsofFuzzyNumbers 63 3.7.1 SimulationoftheHumanGlucoseMetabolism 63 3.7.2 EstimationofanOngoingProject’sCompletionTime 66 3.7.2.1 ModelofaProject 67 Exercises 68 4 FuzzyRelations 71 4.1 CrispRelations 71 4.1.1 PropertiesofRelations 72 4.1.2 NewRelationsfromOldOnes 72 4.1.3 RepresentingRelationsUsingMatrices 73 4.1.4 RepresentingRelationsUsingDirectedGraphs 73 4.1.5 TransitiveClosureofaRelation 74 4.1.6 EquivalenceRelations 75 4.2 FuzzyRelations 75 4.3 CartesianProduct,Projections,andCylindricalExtension 77 4.3.1 CartesianProduct 77 4.3.2 ProjectionofFuzzyRelations 77 4.3.3 CylindricalExtension 78 (cid:2) (cid:2) Contents ix 4.4 NewFuzzyRelationsfromOldOnes 78 4.5 FuzzyBinaryRelationsonaSet 81 4.5.1 TransitiveClosure 82 4.5.2 SimilarityRelations 83 4.5.3 ProximityRelations 83 4.6 FuzzyOrders 87 4.7 ElementsofFuzzyGraphTheory 89 4.7.1 GraphsandHypergraphs 89 4.7.2 FuzzyGraphs 91 4.7.2.1 PathsandConnectedness 92 4.7.2.2 BridgesandCutVertices 93 4.7.2.3 FuzzyTreesandFuzzyForests 93 4.7.3 FuzzyHypergraphs 96 4.8* FuzzyCategoryTheory 98 4.8.1 CommutativeDiagrams 99 4.8.2 CategoriesofFuzzyStructures 99 4.8.3 EmbeddingFuzzyCategoriestoChuCategories 101 4.8.4 FuzzyCategories 103 4.9* FuzzyVectors 105 4.10 Applications 107 (cid:2) (cid:2) Exercises 109 5 PossibilityTheory 111 5.1 FuzzyRestrictionsandPossibilityTheory 111 5.2 PossibilityandNecessityMeasures 113 5.3 PossibilityTheory 115 5.4 PossibilityTheoryandProbabilityTheory 118 5.5 AnUnexpectedApplicationofPossibilityTheory 122 Exercises 128 6 FuzzyStatistics 129 6.1 RandomVariables 129 6.2 FuzzyRandomVariables 132 6.3 PointEstimation 136 6.3.1 TheUnbiasedEstimator 137 6.3.2 TheConsistentEstimator 138 6.3.3 TheMaximumLikelihoodEstimator 139 6.4 FuzzyPointEstimation 140 6.5 IntervalEstimation 141 6.6 IntervalEstimationforFuzzyData 143 6.7 HypothesisTesting 144 6.8 FuzzyHypothesisTesting 146 (cid:2) (cid:2) x Contents 6.9 StatisticalRegression 148 6.10 FuzzyRegression 151 Exercises 153 7 FuzzyLogics 155 7.1 MathematicalLogic 155 7.2 Many-ValuedLogics 161 7.3 OnFuzzyLogics 166 7.4 Hájek’sBasicMany-ValuedLogic 168 7.5 ŁukasiewiczFuzzyLogic 171 7.6 ProductFuzzyLogic 172 7.7 GödelFuzzyLogic 174 7.8 First-OrderFuzzyLogics 176 7.9 FuzzyQuantifiers 178 7.10 ApproximateReasoning 179 7.11 Application:FuzzyExpertSystems 182 7.11.1 Fuzzification 184 7.11.2 EvaluationofRules 184 7.11.3 Defuzzification 185 7.12* ALogicofVagueness 187 (cid:2) (cid:2) Exercises 189 8 FuzzyComputation 191 8.1 Automata,Grammars,andMachines 191 8.2 FuzzyLanguagesandGrammars 196 8.3 FuzzyAutomata 200 8.4 FuzzyTuringMachines 205 8.5 OtherFuzzyModelsofComputation 209 9 FuzzyAbstractAlgebra 215 9.1 Groups,Rings,andFields 215 9.2 FuzzyGroups 219 9.3 AbelianFuzzySubgroups 224 9.4 FuzzyRingsandFuzzyFields 227 9.5 FuzzyVectorSpaces 229 9.6 FuzzyNormedSpaces 230 9.7 FuzzyLieAlgebras 231 Exercises 233 10 FuzzyTopology 235 10.1 MetricandTopologicalSpaces 235 10.2 FuzzyMetricSpaces 240 (cid:2) (cid:2) Contents xi 10.3 FuzzyTopologicalSpaces 245 10.4 FuzzyProductSpaces 248 10.5 FuzzySeparation 250 10.5.1 Separation 256 10.6 FuzzyNets 256 10.7 FuzzyCompactness 257 10.8 FuzzyConnectedness 258 10.9 SmoothFuzzyTopologicalSpaces 258 10.10 FuzzyBanachandFuzzyHilbertSpaces 260 10.11* FuzzyTopologicalSystems 263 Exercises 267 11 FuzzyGeometry 269 11.1 FuzzyPointsandFuzzyDistance 269 11.2 FuzzyLinesandTheirProperties 272 11.3 FuzzyCircles 276 11.4 RegularFuzzyPolygons 280 11.5 ApplicationsinTheoreticalPhysics 285 Exercises 287 (cid:2) (cid:2) 12 FuzzyCalculus 289 12.1 FuzzyFunctions 289 12.2 IntegralsofFuzzyFunctions 294 12.3 DerivativesofFuzzyFunctions 298 12.4 FuzzyLimitsofSequencesandFunctions 300 12.4.1 FuzzyOrdinaryDifferentialEquations 304 12.4.2 FuzzyPartialDifferentialEquations 310 Exercises 313 A FuzzyApproximation 315 A.1 WeierstrassandStone–WeierstrassApproximationTheorems 315 A.2 WeierstrassandStone–WeierstrassFuzzyAnalogs 316 B ChaosandVagueness 319 B.1 ChaosTheoryinaNutshell 319 B.2 FuzzyChaos 322 B.3 FuzzyFractals 324 WorksCited 327 SubjectIndex 349 AuthorIndex 361 (cid:2)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.