ebook img

A Modern Introduction to Differential Equations PDF

550 Pages·2020·7.678 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Modern Introduction to Differential Equations

A Modern Introduction to Differential Equations A Modern Introduction to Differential Equations Third Edition Henry J. Ricardo Medgar Evers College The City University of New York Brooklyn, NY, United States AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1650,SanDiego,CA92101,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom Copyright©2021ElsevierInc.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronic ormechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem, withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission,further informationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizationssuch astheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions. Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatment maybecomenecessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluating andusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,including partiesforwhomtheyhaveaprofessionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assume anyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability, negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions,orideas containedinthematerialherein. LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary ISBN:978-0-12-823417-4 ForinformationonallAcademicPresspublications visitourwebsiteathttps://www.elsevier.com/books-and-journals Publisher:KateyBirtcher EditorialProjectManager:AndraeAkeh ProductionProjectManager:BeulaChristopher Designer:BrianSalisbury TypesetbyVTeX ForCatherine,thesolestableequilibriumpointinmylife,and forall thesecondderivatives: Tomásand NicholasRicardo ChristopherCorcoran Joshua andElizabethGritmon Contents Preface ...................................................... xi Acknowledgments ............................................. xv CHAPTER 1 Introduction to differential equations ............. 1 Introduction ...................................... 1 1.1 Basicterminology ................................. 2 1.2 Solutionsofdifferentialequations ..................... 8 1.3 Initial-valueproblemsandboundary-valueproblems ....... 14 Summary ........................................ 25 CHAPTER 2 First-order differential equations ................. 27 Introduction ...................................... 27 2.1 Separableequations ................................ 27 2.2 Linearequations .................................. 39 2.3 Compartmentproblems ............................. 50 2.4 Slopefields ...................................... 57 2.5 Phaselinesandphaseportraits ........................ 72 2.6 Equilibriumpoints:sinks,sources,andnodes ............. 78 2.7 Bifurcations ...................................... 87 *2.8 Existenceanduniquenessofsolutions1 ................. 98 Summary ........................................ 108 CHAPTER 3 The numerical approximation of solutions ........ 111 Introduction ...................................... 111 3.1 Euler’smethod ................................... 111 3.2 TheimprovedEulermethod .......................... 131 3.3 Moresophisticatednumericalmethods:Runge–Kuttaand others .......................................... 135 Summary ........................................ 140 CHAPTER 4 Second- and higher-order equations ............. 143 Introduction ...................................... 143 4.1 Homogeneoussecond-orderlinearequationswithconstant coefficients ...................................... 143 4.2 Nonhomogeneoussecond-orderlinearequationswithconstant coefficients ...................................... 154 4.3 Themethodofundeterminedcoefficients ................ 156 4.4 Variationofparameters ............................. 165 4.5 Higher-orderlinearequationswithconstantcoefficients ..... 172 *4.6 Existenceanduniqueness1 ........................... 177 Summary ........................................ 181 vii viii Contents CHAPTER 5 The Laplace transform .......................... 185 Introduction ...................................... 185 5.1 TheLaplacetransformofsomeimportantfunctions ........ 186 5.2 Theinversetransformandtheconvolution ............... 194 5.3 Transformsofdiscontinuousfunctions .................. 205 5.4 Transformsofimpulsefunctions—theDiracdeltafunction .. 213 5.5 Transformsofsystemsoflineardifferentialequations ...... 217 *5.6 Laplacetransformsoflineardifferentialequationswith variablecoefficients1 ............................... 223 Summary ........................................ 227 CHAPTER 6 Systems of linear differential equations .......... 231 Introduction ...................................... 231 6.1 Higher-orderequationsandtheirequivalentsystems........ 231 *6.2 Existenceanduniqueness1 ........................... 239 6.3 Numericalsolutionsofsystems ....................... 244 6.4 Thegeometryofautonomoussystems .................. 253 6.5 Systemsandmatrices............................... 265 6.6 Two-dimensionalsystemsoffirst-orderlinearequations ..... 271 6.7 Thestabilityofhomogeneouslinearsystems:unequalreal eigenvalues ...................................... 286 6.8 Thestabilityofhomogeneouslinearsystems:equalreal eigenvalues ...................................... 298 6.9 Thestabilityofhomogeneouslinearsystems:complex eigenvalues ...................................... 305 6.10 Nonhomogeneoussystems ........................... 314 *6.11 Spring-massproblems1 ............................. 325 6.12 Generalizations:then×ncase(n≥3) ................. 340 Summary ........................................ 357 CHAPTER 7 Systems of nonlinear differential equations ....... 361 Introduction ...................................... 361 7.1 Equilibriaofnonlinearsystems ....................... 361 7.2 Linearapproximationatequilibriumpoints .............. 366 7.3 TheHartman–Grobmantheorem ...................... 375 7.4 Twoimportantnonlinearsystems ...................... 384 7.5 Bifurcations ...................................... 397 *7.6 LimitcyclesandtheHopfbifurcation1 .................. 402 Summary ........................................ 418 APPENDIX A Some calculus concepts and results . . . . . . . . . 421 A.1 Locallinearity:thetangentlineapproximation ............ 421 A.2 Thechainrule .................................... 422 A.3 TheTaylorpolynomial/Taylorseries ................... 422 A.4 Thefundamentaltheoremofcalculus ................... 425 A.5 Partialfractions ................................... 426 Contents ix A.6 Improperintegrals ................................. 427 A.7 Functionsofseveralvariables/partialderivatives .......... 429 A.8 Thetangentplane:theTaylorexpansionofF(x,y) ........ 431 APPENDIX B Vectors and matrices . . . . . . . . . . . . . . . . . . . . 433 B.1 Vectorsandvectoralgebra;polarcoordinates ............. 433 B.2 Matricesandbasicmatrixalgebra ..................... 436 B.3 Lineartransformationsandmatrixmultiplication .......... 437 B.4 Eigenvaluesandeigenvectors ......................... 442 APPENDIX C Complex numbers . . . . . . . . . . . . . . . . . . . . . . . 445 C.1 Complexnumbers:thealgebraicview .................. 445 C.2 Complexnumbers:thegeometricview.................. 446 C.3 Thequadraticformula .............................. 448 C.4 Euler’sformula ................................... 448 APPENDIX D Series solutions of differential equations . . . . . . 449 D.1 Powerseriessolutionsoffirst-orderequations ............ 449 D.2 Seriessolutionsofsecond-orderlinearequations:ordinary points .......................................... 451 D.3 Regularsingularpoints:themethodofFrobenius .......... 454 D.4 Thepointatinfinity ................................ 458 D.5 Someadditionalspecialdifferentialequations ............ 460 Answersandhintstoodd-numberedexercises ......................... 461 Index ....................................................... 525 1 ∗Denotesanoptionalsection. Preface Philosophy The evolution of the differential equations course I described in the prefaces to the first two editions of this book has progressed nicely. In particular, the quantitative, graphical,andqualitativeaspectsofthesubjecthavebeenreceivingincreasedatten- tion,dueinlargeparttotheavailabilityoftechnologyintheclassroomandathome. Asdidthepreviouseditions,thisneweditionpresentsasolidyethighlyaccessible introductiontodifferentialequations,developingmanyconceptsfromtheperspective ofdynamicalsystemsandemployingtechnologytotreattopicsgraphically,numer- ically, and analytically. In particular, the book acknowledges that most differential equationscannotbesolvedinclosedformandmakesextensiveuseofqualitativeand numericalmethodstoanalyzesolutions. Thetextincludesdiscussionsofmanysignificantmathematicalmodels,although thereisnosystematicattempttoteachtheartofmodeling.Similarly,thetextintro- ducesonlytheminimumamountoflinearalgebrasufficientforananalysisofsystems ofequations. Thisbookisintendedtobethetextforaone-semesterordinarydifferentialequa- tionscoursethatistypicallyofferedatthesophomoreorjuniorlevel,butwithsome differences. The prerequisite for the course is two semesters of calculus. No prior knowledgeofmultivariablecalculusandlinearalgebraisneededbecausebasiccon- cepts from these subjects are developed within the text itself. This book is aimed primarily at students majoring in mathematics, the natural sciences, and engineer- ing. However, students in economics, business, and the social sciences who have the necessary background should also benefit from the material presented in this book. Use of technology This text assumes that the student has access to a computer algebra system (CAS) or perhaps some specialized software that will enable him or her to construct the required graphs (solution curves, slope fields, phase portraits, etc.) and numerical approximations.Forexample,aspreadsheetprogramcanbeusedeffectivelytoim- plement Euler’s method of approximating solutions. Although I have used Maple® in my own teaching, no specific software or hardware platform is assumed for this book.Toalargeextent,evenagraphingcalculatorwillsuffice. xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.