ebook img

A Mathematical Introduction to Logic, Second Edition PDF

330 Pages·2001·2.011 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Mathematical Introduction to Logic, Second Edition

A Mathematical Introduction to Logic This Page Intentionally Left Blank A Mathematical Introduction to Logic Second Edition Herbert B. Enderton University of California, Los Angeles AHarcourtScienceandTechnologyCompany SanDiego NewYork Boston London Toronto Sydney Tokyo SponsoringEditor BarbaraHolland ProductionEditor JulieBolduc EditorialCoordinator KarenFrost MarketingManager MarianneRutter CoverDesign JudyArisman,ArismanDesign Copyeditor KristinLandon Composition InteractiveCompositionCorporation Printer TheMaple-VailBookManufacturingGroup Thisbookisprintedonacid-freepaper.(cid:2)∞ Copyright(cid:2)c 2001,1972byHARCOURT/ACADEMICPRESS Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyany means,electronicormechanical,includingphotocopy,recording,orany informationstorageandretrievalsystem,withoutpermissioninwritingfromthe publisher. Requestsforpermissiontomakecopiesofanypartoftheworkshouldbemailedto: PermissionsDepartment,Harcourt,Inc.,6277SeaHarborDrive,Orlando,Florida 32887-6777. AcademicPress AHarcourtScienceandTechnologyCompany 525BStreet,Suite1900,SanDiego,California92101-4495,USA http://www.academicpress.com AcademicPress HarcourtPlace,32JamestownRoad,LondonNW17BY,UK http://www.academicpress.com Harcourt/AcademicPress AHarcourtScienceandTechnologyCompany 200WheelerRoad,Burlington,Massachusetts01803,USA http://www.harcourt-ap.com LibraryofCongressCatalogCardNumber:00-110670 InternationalStandardBookNumber:0-12-238452-0 PRINTEDINTHEUNITEDSTATESOFAMERICA 00 01 02 03 04 05 MB 9 8 7 6 5 4 3 2 1 forEricandBert This Page Intentionally Left Blank Contents PREFACE ix INTRODUCTION xi CHAPTERZERO UsefulFactsaboutSets 1 CHAPTERONE SententialLogic 11 1.0 InformalRemarksonFormalLanguages 11 1.1 TheLanguageofSententialLogic 13 1.2 TruthAssignments 20 1.3 AParsingAlgorithm 29 1.4 InductionandRecursion 34 1.5 SententialConnectives 45 1.6 SwitchingCircuits 54 1.7 CompactnessandEffectiveness 59 CHAPTERTWO First-OrderLogic 67 2.0 PreliminaryRemarks 67 2.1 First-OrderLanguages 69 2.2 TruthandModels 80 2.3 AParsingAlgorithm 105 2.4 ADeductiveCalculus 109 2.5 SoundnessandCompletenessTheorems 131 2.6 ModelsofTheories 147 2.7 InterpretationsBetweenTheories 164 2.8 NonstandardAnalysis 173 CHAPTERTHREE Undecidability 182 3.0 NumberTheory 182 3.1 NaturalNumberswithSuccessor 187 3.2 OtherReductsofNumberTheory 193 3.3 ASubtheoryofNumberTheory 202 3.4 ArithmetizationofSyntax 224 vii viii Contents 3.5 IncompletenessandUndecidability 234 3.6 RecursiveFunctions 247 3.7 SecondIncompletenessTheorem 266 3.8 RepresentingExponentiation 276 CHAPTERFOUR Second-OrderLogic 282 4.1 Second-OrderLanguages 282 4.2 SkolemFunctions 287 4.3 Many-SortedLogic 295 4.4 GeneralStructures 299 SUGGESTIONSFORFURTHERREADING 307 LISTOFSYMBOLS 309 INDEX 311 Preface T his book, like the first edition, presents the basic conceptsandresultsoflogic:thetopicsareproofs, truth,andcomputability.Asbefore,thepresentation isdirectedtowardthereaderwithsomemathematicalback- groundandinterests.Inthisrevisededition,inadditionto numerous“local”changes,therearethree“global”waysin whichthepresentationhasbeenchanged: First, I have attempted to make the material more ac- cessible to the typical undergraduate student. In the main development,Ihavetriednottotakeforgrantedinforma- tion or insights that might be unavailable to a junior-level mathematicsstudent. Second,fortheinstructorwhowantstofitthebooktohis orhercourse,theorganizationhasbeenmademoreflexible. Footnotesatthebeginningofmanyofthesectionsindicate optionalpathstheinstructor—ortheindependentreader— mightchoosetotake. Third,theoreticalcomputersciencehasinfluencedlogic inrecentyears,andsomeofthatinfluenceisreflectedinthis edition. Issues of computability are taken more seriously. Somematerialonfinitemodelshasbeenincorporatedinto thetext. The book is intended to serve as a textbook for an in- troductorymathematicscourseinlogicatthejunior-senior level.Theobjectivesaretopresenttheimportantconcepts andtheoremsoflogicandtoexplaintheirsignificanceand theirrelationshiptothereader’sothermathematicalwork. Asatext,thebookcanbeusedincoursesanywherefrom aquartertoayearinlength.Inonequarter,Igenerallyreach thematerialonmodelsoffirst-ordertheories(Section2.6). Theextratimeaffordedbyasemesterwouldpermitsome glimpse of undecidability, as in Section 3.0. In a second ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.