ebook img

A Guide to Functional Analysis PDF

150 Pages·2013·1.405 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Guide to Functional Analysis

A Guide to Functional Analysis (cid:13)c 2013by TheMathematicalAssociationofAmerica(Incorporated) LibraryofCongressCatalogCardNumber2013935093 PrintEditionISBN978-0-88385-357-3 ElectronicEditionISBN978-1-61444-213-4 PrintedintheUnitedStatesofAmerica CurrentPrinting(lastdigit): 10987654321 TheDolcianiMathematicalExpositions NUMBERFORTY-NINE MAAGuides#49 A Guide to Functional Analysis Steven G. Krantz Washington University in St. Louis PublishedandDistributedby TheMathematicalAssociationofAmerica The DOLCIANIMATHEMATICAL EXPOSITIONS series oftheMathe- maticalAssociationofAmericawasestablishedthroughagenerousgiftto theAssociationfromMaryP.Dolciani,ProfessorofMathematicsatHunter College of the City University of New York. In making the gift, Profes- sor Dolciani,herself an exceptionallytalentedand successful expositorof mathematics,hadthepurposeoffurtheringtheidealofexcellenceinmath- ematicalexposition. The Association,foritspart,wasdelightedtoaccept thegraciousges- tureinitiatingtherevolvingfundforthisseriesfromonewhohasservedthe Associationwithdistinction,bothas a member oftheCommitteeonPub- licationsandasamember oftheBoardofGovernors. Itwaswithgenuine pleasurethattheBoardchosetonametheseriesinherhonor. Thebooksintheseriesareselectedfortheirlucidexpositorystyleand stimulatingmathematicalcontent. Typically,theycontainanamplesupply ofexercises, many withaccompanying solutions. They are intendedtobe sufficientlyelementaryfortheundergraduateandeven themathematically inclinedhigh-schoolstudentto understandandenjoy, butalso tobe inter- estingandsometimeschallengingtothemoreadvancedmathematician. CommitteeonBooks FrankFarris,Chair DolcianiMathematicalExpositionsEditorialBoard UnderwoodDudley,Editor JeremyS.Case RosalieA.Dance ChristopherDaleGoff ThomasM.Halverson MichaelJ.McAsey MichaelJ.Mossinghoff JonathanRogness ElizabethD.Russell RobertW.Vallin 1. MathematicalGems,RossHonsberger 2. MathematicalGemsII,RossHonsberger 3. MathematicalMorsels,RossHonsberger 4. MathematicalPlums,RossHonsberger(ed.) 5. GreatMomentsinMathematics(Before1650),HowardEves 6. MaximaandMinimawithoutCalculus,IvanNiven 7. GreatMomentsinMathematics(After1650),HowardEves 8. MapColoring,Polyhedra,andtheFour-ColorProblem,DavidBarnette 9. MathematicalGemsIII,RossHonsberger 10. MoreMathematicalMorsels,RossHonsberger 11. Old and New Unsolved Problems in Plane Geometry and Number Theory, VictorKleeandStanWagon 12. ProblemsforMathematicians,YoungandOld,PaulR.Halmos 13. ExcursionsinCalculus:AnInterplayoftheContinuousandtheDiscrete,Robert M.Young 14. The WohascumCountyProblem Book,GeorgeT. Gilbert, Mark Krusemeyer, andLorenC.Larson 15. LionHuntingandOtherMathematicalPursuits:ACollectionofMathematics, Verse,andStoriesbyRalphP.Boas,Jr.,editedbyGeraldL.Alexandersonand DaleH.Mugler 16. LinearAlgebraProblemBook,PaulR.Halmos 17. FromErdo˝stoKiev:ProblemsofOlympiadCaliber,RossHonsberger 18. WhichWayDidtheBicycleGo?...andOtherIntriguingMathematicalMyster- ies,JosephD.E.Konhauser,DanVelleman,andStanWagon 19. InPo´lya’sFootsteps:MiscellaneousProblemsandEssays,RossHonsberger 20. DiophantusandDiophantineEquations,I.G.Bashmakova(UpdatedbyJoseph SilvermanandtranslatedbyAbeShenitzer) 21. LogicasAlgebra,PaulHalmosandStevenGivant 22. Euler:TheMasterofUsAll,WilliamDunham 23. TheBeginningsandEvolutionofAlgebra,I.G.BashmakovaandG.S.Smirnova (TranslatedbyAbeShenitzer) 24. MathematicalChestnutsfromAroundtheWorld,RossHonsberger 25. CountingonFrameworks: MathematicstoAidtheDesignofRigidStructures, JackE.Graver 26. MathematicalDiamonds,RossHonsberger 27. ProofsthatReallyCount:TheArtofCombinatorialProof,ArthurT.Benjamin andJenniferJ.Quinn 28. MathematicalDelights,RossHonsberger 29. Conics,KeithKendig 30. Hesiod’s Anvil: falling and spinning through heaven and earth, Andrew J. Simoson 31. AGardenofIntegrals,FrankE.Burk 32. AGuidetoComplexVariables(MAAGuides#1),StevenG.Krantz 33. SinkorFloat?ThoughtProblemsinMathandPhysics,KeithKendig 34. BiscuitsofNumberTheory,ArthurT.BenjaminandEzraBrown 35. Uncommon Mathematical Excursions: Polynomia and Related Realms, Dan Kalman 36. WhenLessisMore:VisualizingBasicInequalities,ClaudiAlsinaandRogerB. Nelsen 37. AGuidetoAdvancedRealAnalysis(MAAGuides#2),GeraldB.Folland 38. AGuidetoRealVariables(MAAGuides#3),StevenG.Krantz 39. Voltaire’s Riddle: Microme´gas and the measure of all things, Andrew J. Simoson 40. AGuidetoTopology,(MAAGuides#4),StevenG.Krantz 41. AGuidetoElementaryNumberTheory,(MAAGuides#5),UnderwoodDudley 42. Charming Proofs: A Journey into Elegant Mathematics, Claudi Alsina and RogerB.Nelsen 43. MathematicsandSports,editedbyJosephA.Gallian 44. AGuidetoAdvancedLinearAlgebra,(MAAGuides#6),StevenH.Weintraub 45. IconsofMathematics:AnExplorationofTwentyKeyImages,ClaudiAlsinaand RogerB.Nelsen 46. AGuidetoPlaneAlgebraicCurves,(MAAGuides#7),KeithKendig 47. NewHorizonsinGeometry,TomM.ApostolandMamikonA.Mnatsakanian 48. AGuidetoGroups,Rings,andFields,(MAAGuides#8),FernandoQ.Gouveˆa 49. AGuidetoFunctionalAnalysis,(MAAGuides#9),StevenG.Krantz MAAServiceCenter P.O.Box91112 Washington,DC20090-1112 1-800-331-1MAA FAX:1-301-206-9789 To the memory of Stefan Banach. Contents Preface......................................................... xi 1 Fundamentals............................................... 1 1.1 WhatisFunctionalAnalysis? . . . . . . . . . . . . . . . . 1 1.2 NormedLinearSpaces . . . . . . . . . . . . . . . . . . . . 2 1.3 Finite-DimensionalSpaces . . . . . . . . . . . . . . . . . 5 1.4 LinearOperators . . . . . . . . . . . . . . . . . . . . . . . 6 1.5 TheBaireCategoryTheorem . . . . . . . . . . . . . . . . 8 1.6 TheThreeBigResults . . . . . . . . . . . . . . . . . . . . 9 1.7 ApplicationsoftheBigThree . . . . . . . . . . . . . . . . 15 2 OdetotheDualSpace....................................... 27 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2 ConsequencesoftheHahn-BanachTheorem . . . . . . . . 29 3 HilbertSpace ............................................... 33 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2 TheGeometryofHilbertSpace . . . . . . . . . . . . . . . 36 4 TheAlgebraofOperators.................................... 45 4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2 TheAlgebraofBoundedLinearOperators . . . . . . . . . 47 4.3 CompactOperators . . . . . . . . . . . . . . . . . . . . . 50 5 BanachAlgebraBasics...................................... 59 5.1 IntroductiontoBanachAlgebras . . . . . . . . . . . . . . 59 5.2 TheStructureofaBanachAlgebra . . . . . . . . . . . . . 63 5.3 Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.4 TheWienerTauberianTheorem . . . . . . . . . . . . . . . 72 6 TopologicalVectorSpaces.................................... 75 6.1 BasicIdeas . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.2 Fre´chetSpaces . . . . . . . . . . . . . . . . . . . . . . . . 78 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.