A Guide to Functional Analysis (cid:13)c 2013by TheMathematicalAssociationofAmerica(Incorporated) LibraryofCongressCatalogCardNumber2013935093 PrintEditionISBN978-0-88385-357-3 ElectronicEditionISBN978-1-61444-213-4 PrintedintheUnitedStatesofAmerica CurrentPrinting(lastdigit): 10987654321 TheDolcianiMathematicalExpositions NUMBERFORTY-NINE MAAGuides#49 A Guide to Functional Analysis Steven G. Krantz Washington University in St. Louis PublishedandDistributedby TheMathematicalAssociationofAmerica The DOLCIANIMATHEMATICAL EXPOSITIONS series oftheMathe- maticalAssociationofAmericawasestablishedthroughagenerousgiftto theAssociationfromMaryP.Dolciani,ProfessorofMathematicsatHunter College of the City University of New York. In making the gift, Profes- sor Dolciani,herself an exceptionallytalentedand successful expositorof mathematics,hadthepurposeoffurtheringtheidealofexcellenceinmath- ematicalexposition. The Association,foritspart,wasdelightedtoaccept thegraciousges- tureinitiatingtherevolvingfundforthisseriesfromonewhohasservedthe Associationwithdistinction,bothas a member oftheCommitteeonPub- licationsandasamember oftheBoardofGovernors. Itwaswithgenuine pleasurethattheBoardchosetonametheseriesinherhonor. Thebooksintheseriesareselectedfortheirlucidexpositorystyleand stimulatingmathematicalcontent. Typically,theycontainanamplesupply ofexercises, many withaccompanying solutions. They are intendedtobe sufficientlyelementaryfortheundergraduateandeven themathematically inclinedhigh-schoolstudentto understandandenjoy, butalso tobe inter- estingandsometimeschallengingtothemoreadvancedmathematician. CommitteeonBooks FrankFarris,Chair DolcianiMathematicalExpositionsEditorialBoard UnderwoodDudley,Editor JeremyS.Case RosalieA.Dance ChristopherDaleGoff ThomasM.Halverson MichaelJ.McAsey MichaelJ.Mossinghoff JonathanRogness ElizabethD.Russell RobertW.Vallin 1. MathematicalGems,RossHonsberger 2. MathematicalGemsII,RossHonsberger 3. MathematicalMorsels,RossHonsberger 4. MathematicalPlums,RossHonsberger(ed.) 5. GreatMomentsinMathematics(Before1650),HowardEves 6. MaximaandMinimawithoutCalculus,IvanNiven 7. GreatMomentsinMathematics(After1650),HowardEves 8. MapColoring,Polyhedra,andtheFour-ColorProblem,DavidBarnette 9. MathematicalGemsIII,RossHonsberger 10. MoreMathematicalMorsels,RossHonsberger 11. Old and New Unsolved Problems in Plane Geometry and Number Theory, VictorKleeandStanWagon 12. ProblemsforMathematicians,YoungandOld,PaulR.Halmos 13. ExcursionsinCalculus:AnInterplayoftheContinuousandtheDiscrete,Robert M.Young 14. The WohascumCountyProblem Book,GeorgeT. Gilbert, Mark Krusemeyer, andLorenC.Larson 15. LionHuntingandOtherMathematicalPursuits:ACollectionofMathematics, Verse,andStoriesbyRalphP.Boas,Jr.,editedbyGeraldL.Alexandersonand DaleH.Mugler 16. LinearAlgebraProblemBook,PaulR.Halmos 17. FromErdo˝stoKiev:ProblemsofOlympiadCaliber,RossHonsberger 18. WhichWayDidtheBicycleGo?...andOtherIntriguingMathematicalMyster- ies,JosephD.E.Konhauser,DanVelleman,andStanWagon 19. InPo´lya’sFootsteps:MiscellaneousProblemsandEssays,RossHonsberger 20. DiophantusandDiophantineEquations,I.G.Bashmakova(UpdatedbyJoseph SilvermanandtranslatedbyAbeShenitzer) 21. LogicasAlgebra,PaulHalmosandStevenGivant 22. Euler:TheMasterofUsAll,WilliamDunham 23. TheBeginningsandEvolutionofAlgebra,I.G.BashmakovaandG.S.Smirnova (TranslatedbyAbeShenitzer) 24. MathematicalChestnutsfromAroundtheWorld,RossHonsberger 25. CountingonFrameworks: MathematicstoAidtheDesignofRigidStructures, JackE.Graver 26. MathematicalDiamonds,RossHonsberger 27. ProofsthatReallyCount:TheArtofCombinatorialProof,ArthurT.Benjamin andJenniferJ.Quinn 28. MathematicalDelights,RossHonsberger 29. Conics,KeithKendig 30. Hesiod’s Anvil: falling and spinning through heaven and earth, Andrew J. Simoson 31. AGardenofIntegrals,FrankE.Burk 32. AGuidetoComplexVariables(MAAGuides#1),StevenG.Krantz 33. SinkorFloat?ThoughtProblemsinMathandPhysics,KeithKendig 34. BiscuitsofNumberTheory,ArthurT.BenjaminandEzraBrown 35. Uncommon Mathematical Excursions: Polynomia and Related Realms, Dan Kalman 36. WhenLessisMore:VisualizingBasicInequalities,ClaudiAlsinaandRogerB. Nelsen 37. AGuidetoAdvancedRealAnalysis(MAAGuides#2),GeraldB.Folland 38. AGuidetoRealVariables(MAAGuides#3),StevenG.Krantz 39. Voltaire’s Riddle: Microme´gas and the measure of all things, Andrew J. Simoson 40. AGuidetoTopology,(MAAGuides#4),StevenG.Krantz 41. AGuidetoElementaryNumberTheory,(MAAGuides#5),UnderwoodDudley 42. Charming Proofs: A Journey into Elegant Mathematics, Claudi Alsina and RogerB.Nelsen 43. MathematicsandSports,editedbyJosephA.Gallian 44. AGuidetoAdvancedLinearAlgebra,(MAAGuides#6),StevenH.Weintraub 45. IconsofMathematics:AnExplorationofTwentyKeyImages,ClaudiAlsinaand RogerB.Nelsen 46. AGuidetoPlaneAlgebraicCurves,(MAAGuides#7),KeithKendig 47. NewHorizonsinGeometry,TomM.ApostolandMamikonA.Mnatsakanian 48. AGuidetoGroups,Rings,andFields,(MAAGuides#8),FernandoQ.Gouveˆa 49. AGuidetoFunctionalAnalysis,(MAAGuides#9),StevenG.Krantz MAAServiceCenter P.O.Box91112 Washington,DC20090-1112 1-800-331-1MAA FAX:1-301-206-9789 To the memory of Stefan Banach. Contents Preface......................................................... xi 1 Fundamentals............................................... 1 1.1 WhatisFunctionalAnalysis? . . . . . . . . . . . . . . . . 1 1.2 NormedLinearSpaces . . . . . . . . . . . . . . . . . . . . 2 1.3 Finite-DimensionalSpaces . . . . . . . . . . . . . . . . . 5 1.4 LinearOperators . . . . . . . . . . . . . . . . . . . . . . . 6 1.5 TheBaireCategoryTheorem . . . . . . . . . . . . . . . . 8 1.6 TheThreeBigResults . . . . . . . . . . . . . . . . . . . . 9 1.7 ApplicationsoftheBigThree . . . . . . . . . . . . . . . . 15 2 OdetotheDualSpace....................................... 27 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2 ConsequencesoftheHahn-BanachTheorem . . . . . . . . 29 3 HilbertSpace ............................................... 33 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2 TheGeometryofHilbertSpace . . . . . . . . . . . . . . . 36 4 TheAlgebraofOperators.................................... 45 4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2 TheAlgebraofBoundedLinearOperators . . . . . . . . . 47 4.3 CompactOperators . . . . . . . . . . . . . . . . . . . . . 50 5 BanachAlgebraBasics...................................... 59 5.1 IntroductiontoBanachAlgebras . . . . . . . . . . . . . . 59 5.2 TheStructureofaBanachAlgebra . . . . . . . . . . . . . 63 5.3 Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.4 TheWienerTauberianTheorem . . . . . . . . . . . . . . . 72 6 TopologicalVectorSpaces.................................... 75 6.1 BasicIdeas . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.2 Fre´chetSpaces . . . . . . . . . . . . . . . . . . . . . . . . 78 ix