ebook img

A Guide to Feedback Theory PDF

203 Pages·2021·1.855 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Guide to Feedback Theory

AGuidetoFeedbackTheory Do you need to understand feedback? Perhaps you’re a little rusty on theory basics? Dig in to this self-contained guide for an accessible and concise explanation of the fundamentals. (cid:129) Distillstherelevantessenceoflinearsystemtheory,calculus,differentialequations, linearalgebra,basicphysics,numericalmethods,andcomplexanalysisandlinks thembacktoanexplanationoffeedbacktheory. (cid:129) Providesatightsynthesisofanalyticalandconceptualunderstanding. (cid:129) Maintainsafocusoncommonusecases. Whether you are a struggling undergraduate, a doctoral student preparing for your qualifyingexams,oranindustrypractitioner,thiseasy-to-understandbookinvitesyou torelax,enjoythematerial,andfollowyourcuriosity. joel l. dawson is an entrepreneur and former MIT professor. He is a 2009 recipient of the PECASE Award, the highest honor bestowed by the US government on young scientists and engineers. His last start-up company, Eta Devices, Inc., was aTechnologyPioneerofthe2015WorldEconomicForumandacquiredbyNokiain 2016.Hiscurrentstart-upcompanyisTalkingHeadsWireless,Inc. “Feedbacktheoryisanintrinsicallymathematicaldisciplineinwhichonecanfeeleither submergedbyformulaeordriventouseblindcomputersimulationsthathideinsight. Dawson’s approach is to extract visceral meaning out of this tangle, arguing that a deepunderstandingofdynamicstabilitycriteriacanfreethedesignerfrom“equational overload” and lead to incisive selection of the right mathematical tool for the job at hand.” StephenD.Senturia,MassachusettsInstituteofTechnology “Feedbackisperhapsthemostfoundationalconceptforelectronicsandcontrolsystems ingeneral,butitisoftencoveredforspecificcircuitsfortheformer,andintermsofthe- oreticalconceptsforthelatter.Thisbookprovidesuswithauniqueperspectiveonhow feedbacktheoryingeneralrelatestopracticalsystemsandelectronicsapplications.” LarryPileggi,CarnegieMellonUniversity A Guide to Feedback Theory Joel L. Dawson TalkingHeadsWireless,Inc. UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre, NewDelhi–110025,India 79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9780521199216 DOI:10.1017/9781139018289 ©CambridgeUniversityPress2021 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2021 PrintedintheUnitedKingdombyTJBooksLimited,PadstowCornwall AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. ISBN978-0-521-19921-6Hardback ISBN978-0-521-15393-5Paperback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. ForEl´ıas Contents Preface pagexi Acknowledgments xiii 1 LinearSystems:WhatYouMissedtheFirstTime 1 1.1 DifferentialEquationsAreaNaturalWaytoExpressTime Evolution 1 1.1.1 AFirst-OrderSystem 1 1.1.2 Higher-OrderSystems 8 1.1.3 For Those of You Bothered by the Numerical FittinginSection1.1.1 12 1.2 ConvenientPropertiesofLinearDifferentialEquations 12 1.2.1 Superposition! 13 1.2.2 TheSpecialPlaceofExponentials 15 1.2.3 But...WhyComplexExponentials? 19 1.3 FrequencyDomainMethods:ABeautifulStrategy 22 1.3.1 FourierSeriesRepresentationofPeriodicSignals 23 1.3.2 TheFourierTransformandtheMeaningofIntegrals 26 1.3.3 TheStrategy 28 1.4 ImpulsesinLinear,Time-InvariantSystems 29 1.4.1 WhyImpulses? 29 1.4.2 TheFourierTransformandtheImpulseResponse 31 1.4.3 TheFourierTransformofDifferentialEquations 33 1.5 TheUnilateralLaplaceTransform 35 1.5.1 DynamicInterpretationofPoles 36 1.5.2 TheGeometricViewofPolesandZeros 40 1.5.3 InitialandFinalValueTheorems 44 1.5.4 InvertingtheLaplaceTransform 46 1.6 ConvolutionandtheSpecialPlaceofExponentials 47 vii viii Contents 1.7 Discrete-TimeFormalism:SameIdeas,DifferentNotation 47 1.7.1 DifferenceEquationsAreaReallyNatural ExpressionofTimeEvolution 47 1.7.2 TheFourierTransforminDiscreteTime 49 1.7.3 The Z-Transform, the Impulse Response, and ConvolutioninDiscreteTime 50 1.8 ChapterSummary 50 2 TheBasicsofFeedback 52 2.1 FillingaGlasswithWater 52 2.2 Open-versusClosed-LoopControlinBlockDiagrams 55 2.3 AnatomyofaFeedbackLoop 58 2.3.1 BlockDiagrams 58 2.3.2 SensorsandActuators 61 2.3.3 LoopTransmission,NegativeFeedback,and StableEquilibria 66 2.3.4 Black’sFormula 69 2.4 DelayComplicatesEverything 70 2.4.1 PhaseResponseasaFrequency-DependentDelay 71 2.4.2 TheFundamentalOscillationCondition 74 2.4.3 PolesintheRight-HalfPlaneAreBad 75 2.5 RootLocusTechniques 77 2.5.1 TheProblemWe’reTryingtoSolve 79 2.5.2 TheAmazingThingsYouCanDowithTwo SimpleConditions 82 2.5.3 RootLocusasaDesignTool 89 2.5.4 RootLocusinDiscreteTime 99 2.5.5 AUsefulLimitofDT 102 2.6 CommonControlStrategies 105 2.6.1 GainReduction 105 2.6.2 DominantPolesandIntegrators 107 2.6.3 LagandLeadCompensators 108 2.6.4 PIDControl 111 2.7 AnswerstoSampleProblems 113 3 TheNyquistStabilityCriterion 116 3.1 AnAuthoritativeTestofStability 116 3.1.1 TrueDelayandRootLocus 117 3.2 ANoteonConformalMapping 117 3.3 Cauchy’sPrincipleoftheArgument 119 Contents ix 3.4 AndNow... theNyquistStabilityCriterion 122 3.5 BodePlotsHelpwithNyquist 126 3.6 NyquistPlotExamples 131 3.7 PhaseMargin:WhyYouNeverReallyLearnedNyquist 137 3.7.1 TheStabilityMarginConcept 138 3.7.2 PhaseMarginDefinition 139 3.7.3 PhaseMargin,Overshoot,Ringing,and MagnitudePeaking 145 3.8 NyquistandBodeTechniquesforDTSystems 146 4 SomeCommonLooseEnds 147 4.1 “ButinControlTheory,TheyUseLotsofLinearAlgebra...” 147 4.2 TheProblemof“SinusoidsRunningAroundLoops” 150 4.3 Discrete-TimeControlofContinuous-TimeSystems 157 4.3.1 DTProcessingofCTSignals 158 4.3.2 Don’tKidAround:JustOversample 163 4.3.3 Relationshipbetweenzands inMixed-SignalControl 165 4.3.4 DTCompensatorsforCTSystems 169 4.3.5 TheOtherUsefulExtreme:SlowSampling 169 4.3.6 ANoteontheBiastowardCTMethods 169 4.3.7 Sometimes,Real-TimeComputerControlIsHopeless 170 5 FeedbackintheRealWorld 172 5.1 FindingLoopTransmissions 172 5.1.1 IstheSignRight?AUsefulCheck 174 5.2 ACommonApplication:HowlingSpeakersandMicrophones 175 6 ConclusionandFurtherReading 181 Index 183

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.