ebook img

A Generalization of the Chu-Vandermonde Convolution and some Harmonic Number Identities PDF

0.24 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Generalization of the Chu-Vandermonde Convolution and some Harmonic Number Identities

A Generalization of the Chu-Vandermonde Convolution and some Harmonic Number Identities 7 1 0 M.J. Kronenburg 2 r a M Abstract AgeneralizationoftheChu-Vandermondeconvolutionispresentedandproved 7 withtheintegralrepresentationmethod. Thisidentitycanbetransformedinto 2 anotheridentity,whichhasasspecialcasestwoknownidentities. Anotheriden- tity that is closely related to this identity is presented and proved. Some cor- ] O respondingharmonicnumberidentitiesarederived,whichhaveasspecialcases C someknownharmonicnumberidentities. Foronecombinatorialsumarecursion formula is derived and used to compute a few examples. . h t Keywords: binomial coefficient, combinatorial identities, harmonic number. a MSC 2010: 05A10, 05A19 m [ 1 A Generalization of the Chu-Vandermonde 2 v Convolution 8 6 The following theorem is a generalization of the Chu-Vandermonde convolution. 7 2 Theorem 1.1. 0 1. (cid:88)n (cid:18)a(cid:19)(cid:18) b (cid:19)(cid:18)k(cid:19)(cid:18)n−k(cid:19) (cid:18)a+b−c−d(cid:19)(cid:18)a(cid:19)(cid:18)b(cid:19) 0 = (1.1) k n−k c d n−c−d c d 7 k=0 1 : Proof. Applying the trinomial revision identity [10, 11, 13] to the summand twice, v the identity simplifies to: i X n (cid:18) (cid:19)(cid:18) (cid:19) (cid:18) (cid:19) r (cid:88) a−c b−d a+b−c−d a = (1.2) k−c n−d−k n−c−d k=0 Usingtheintegralrepresentationmethodforcombinatorialsums[4,5], thisbecomes: 1 (cid:88)∞ (1+x)a−c (1+y)b−d Res Res x xk−c+1 y yn−d−k+1 k=0 (1+x)a−c(1+y)b−d (cid:88)∞ (cid:16)y(cid:17)k =Res Res x y x−c+1yn−d+1 x k=0 (1+x)a−c(1+y)b−dxc−1 =Res Res x y yn−d+1(1−y/x) (1.3) (1+x)a−c(1+y)b−dxc =Res Res y x yn−d+1(x−y) (1+y)a+b−c−d =Res y yn−c−d+1 (cid:18) (cid:19) a+b−c−d = n−c−d Forthisidentity,thelowerlimitofthesummationmaybereplacedbymax(n−b,c) and the upper limit by min(a,n−d). The special case c=d=0 reduces to the Chu- Vandermonde convolution: n (cid:18) (cid:19)(cid:18) (cid:19) (cid:18) (cid:19) (cid:88) a b a+b = (1.4) k n−k n k=0 and the special case d = 0 was already known in literature [8]. The special case a=b=n reduces to: (cid:88)n (cid:18)n(cid:19)2(cid:18)k(cid:19)(cid:18)n−k(cid:19) (cid:18)2n−c−d(cid:19)(cid:18)n(cid:19)(cid:18)n(cid:19) = (1.5) k c d n c d k=0 The following identity replaces a binomial coefficient by its symmetry equivalent [10, 11, 13]: (cid:18) (cid:19) (cid:18) (cid:19) n −n+k−1 =(−1)k (1.6) k k Replacing a by a−p and b by b−q, and using (1.6), and then taking a = b = −1, the identity transforms to: n (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) (cid:88) p+k q+n−k k n−k n+p+q+1 p+c q+d = (1.7) p q c d n−c−d c d k=0 The special case c=d=0 reduces to [6, 8, 16]: n (cid:18) (cid:19)(cid:18) (cid:19) (cid:18) (cid:19) (cid:88) p+k q+n−k n+p+q+1 = (1.8) p q n k=0 2 and the special case p=q =0 reduces to [8, 10, 11, 15]: n (cid:18) (cid:19)(cid:18) (cid:19) (cid:18) (cid:19) (cid:88) k n−k n+1 = (1.9) c d c+d+1 k=0 Another theorem that is closely related to theorem 1.1 is the following. Theorem 1.2. min(a,b−m)(cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) (cid:88) a b k m+k a+b−c−d a b = (1.10) k m+k c d m+a−d c d k=0 Proof. Applying the trinomial revision identity [10, 11, 13] to the summand twice, the identity simplifies to: min(a,b−m)(cid:18) (cid:19)(cid:18) (cid:19) (cid:18) (cid:19) (cid:88) a−c b−d a+b−c−d = (1.11) k−c k+m−d m+a−d k=0 Usingtheintegralrepresentationmethodforcombinatorialsums[4,5], thisbecomes: (cid:88)∞ (1+x)a−c (1+y)b−d Res Res x xk−c+1 yyk+m−d+1 k=0 (1+x)a−c(1+y)b−d (cid:88)∞ (cid:18) 1 (cid:19)k =Res Res x y x−c+1ym−d+1 xy k=0 (1+x)a−c(1+y)b−dxc−1 =Res Res x y ym−d+1(1−1/(xy)) (1+x)a−c(1+y)b−dxc (1.12) =Res Res y x ym−d+1(x−1/y) (1+1/y)a−c(1+y)b−d =Res y ym+c−d+1 (1+y)a+b−c−d =Res y ym+a−d+1 (cid:18) (cid:19) a+b−c−d = m+a−d For this identity, the lower limit of the summation may be replaced by max(c,d−m). The special case m=0 and c=d=0 reduces to: min(a,b)(cid:18) (cid:19)(cid:18) (cid:19) (cid:18) (cid:19) (cid:88) a b a+b = (1.13) k k a k=0 3 which is equivalent to the special case n = b of (1.4). The special case m = 0 and a=b=n reduces to: (cid:88)n (cid:18)n(cid:19)2(cid:18)k(cid:19)(cid:18)k(cid:19) (cid:18)2n−c−d(cid:19)(cid:18)n(cid:19)(cid:18)n(cid:19) = (1.14) k c d n−d c d k=0 The special cases c = d = 0, c = 1, d = 0 and c = d = 1 of this formula are well known [8]. 2 Harmonic Number Identities Thedefinitionofthegeneralizedharmonicnumberswithnonnegativeintegern,com- plex order m and complex offset c, is [12, 14]: n (cid:88) 1 H(m) = (2.1) c,n (c+k)m k=1 from which follows that H(m) =0, and for notation H(m) =H(m). From this defini- c,0 n 0,n tion follows for nonnegative integer c: H(m) =H(m) −H(m) (2.2) c,n c+n c The classical harmonic numbers are: H =H(1) (2.3) n 0,n Using d/dxΓ(x) = Γ(x)ψ(x) where ψ(x) is the digamma function, and using ψ(x+n+1)−ψ(x+1) = H(1) [1], these harmonic numbers are linked to bino- x,n mial coefficients: (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) d x+y x+y x+y = H(1) = (H −H ) (2.4) dx n n x+y−n,n n x+y x+y−n (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) d n n n = H(1) = (H −H ) (2.5) dx x+y x+y x+y,n−2(x+y) x+y n−(x+y) x+y For the generalized harmonic numbers (2.1): d H(m) =−mH(m+1) (2.6) dx x+y,n x+y,n When differentiating finite summation terms, care must be taken that the differen- tiated symbol is not present in the summation limits. Because the argument of a classical harmonic number cannot be negative, these harmonic numbers impose con- straints on the parameters. When there are additional constraints on the parameters 4 they are mentioned. Differentiating (1.1) to a, the following identity for a≥n results: n (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) (cid:88) a b k n−k H k n−k c d a−k k=0 (2.7) (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) a+b−c−d a b = (H −H +H ) n−c−d c d a+b−n a+b−c−d a−c Differentiating to b, the following identity for b≥n results: n (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) (cid:88) a b k n−k H k n−k c d b−n+k k=0 (2.8) (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) a+b−c−d a b = (H −H +H ) n−c−d c d a+b−n a+b−c−d b−d Replacing k by n−k and interchanging a with b and c with d, these two identities are equivalent. Differentiating to a and b, the following identity for a≥n and b≥n results: n (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) (cid:88) a b k n−k H H k n−k c d a−k b−n+k k=0 (cid:18)a+b−c−d(cid:19)(cid:18)a(cid:19)(cid:18)b(cid:19) (2.9) = [H(2) −H(2) n−c−d c d a+b−n a+b−c−d +(H −H +H )(H −H +H )] a+b−n a+b−c−d a−c a+b−n a+b−c−d b−d The special case a=b=n and c=d=0 reduces to the known identities [2, 3, 8, 14, 16]: (cid:88)n (cid:18)n(cid:19)2 (cid:18)2n(cid:19) H = (2H −H ) (2.10) k k n n 2n k=0 (cid:88)n (cid:18)n(cid:19)2H H =(cid:18)2n(cid:19)[H(2)−H(2)+(2H −H )2] (2.11) k k n−k n n 2n n 2n k=0 Differentiating (1.1) to c, the following identity for b≤n results: n (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) (cid:18) (cid:19)(cid:18) (cid:19) (cid:88) a b n−k a+b−d b H = (H −H +H ) (2.12) k n−k d k n−d d n−d a+b−d a k=0 Differentiating to d, the following identity for a≤n results: n (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) (cid:18) (cid:19)(cid:18) (cid:19) (cid:88) a b k a+b−c a H = (H −H +H ) (2.13) k n−k c n−k n−c c n−c a+b−c b k=0 Replacing k by n−k and interchanging a with b and c with d, these two identities are equivalent. Differentiating to c and d, the following identity for a≤n and b≤n 5 results: n (cid:18) (cid:19)(cid:18) (cid:19) (cid:88) a b H H k n−k k n−k k=0 (2.14) (cid:18) (cid:19) a+b = [H(2)−H(2) +(H −H +H )(H −H +H )] n n a+b n a+b a n a+b b In (1.1) replacing k by c+k and n by n+c, and differentiating to c, the following identity for a−c≥n results: n (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) (cid:88) a b c+k n−k H c+k n−k c d a−c−k k=0 (2.15) (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) a+b−c−d a b = (H −H +H ) n−d c d a+b−n−c a+b−c−d a−c Replacing n with n+d and differentiating to d, the following identity for b−d ≥ n results: n (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) (cid:88) a b k n+d−k H k n+d−k c d b−d−n+k k=0 (2.16) (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) a+b−c−d a b = (H −H +H ) n−c c d a+b−n−d a+b−c−d b−d Replacing k by n−k and interchanging a with b and c with d, these two identities are equivalent. Differentiating to c and d, the following identity for a−c ≥ n and b−d≥n results: n (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) (cid:88) a b c+k n+d−k H H c+k n+d−k c d a−c−k b−d−n+k k=0 (cid:18)a+b−c−d(cid:19)(cid:18)a(cid:19)(cid:18)b(cid:19) (2.17) = [H(2) −H(2) n c d a+b−n−c−d a+b−c−d +(H −H +H )(H −H +H )] a+b−n−c−d a+b−c−d a−c a+b−n−c−d a+b−c−d b−d Differentiating (1.7) to p, the following identity results: n (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) (cid:88) p+k q+n−k k n−k H p q c d p+k k=0 (2.18) (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) n+p+q+1 p+c q+d = (H −H +H ) n−c−d c d n+p+q+1 p+q+c+d+1 p+c The special case p=q =0 is found in [15], and the special case c=d=0 is found in [16]. Differentiating to q, the following identity results: n (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) (cid:88) p+k q+n−k k n−k H p q c d q+n−k k=0 (2.19) (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) n+p+q+1 p+c q+d = (H −H +H ) n−c−d c d n+p+q+1 p+q+c+d+1 q+d 6 Replacing k by n−k and interchanging p with q and c with d, these two identities are equivalent. Differentiating to p and q the following identity results: n (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) (cid:88) p+k q+n−k k n−k H H p q c d p+k q+n−k k=0 (cid:18)n+p+q+1(cid:19)(cid:18)p+c(cid:19)(cid:18)q+d(cid:19) (2.20) = [H(2) −H(2) n−c−d c d p+q+c+d+1 n+p+q+1 +(H −H +H )(H −H +H )] n+p+q+1 p+q+c+d+1 p+c n+p+q+1 p+q+c+d+1 q+d The special case p = q = 0 is found in [15], and the special case c = d = 0 is found in [16]. In (1.7) replacing k by c+k and n by n+c, and differentiating to c, the following identity results: n (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) (cid:88) p+c+k q+n−k c+k n−k H p q c d p+c+k k=0 (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) n+p+q+c+1 p+c q+d = (H −H +H ) n−d c d n+p+q+c+1 p+q+c+d+1 p+c (2.21) Replacing n with n+d and differentiating to d, the following identity results: n (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) (cid:88) p+k q+n+d−k k n+d−k H p q c d q+n+d−k k=0 (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) n+p+q+d+1 p+c q+d = (H −H +H ) n−c c d n+p+q+d+1 p+q+c+d+1 q+d (2.22) Replacing k by n−k and interchanging p with q and c with d, these two identities are equivalent. Differentiating to c and d the following identity results: n (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) (cid:88) p+c+k q+n+d−k c+k n+d−k H H p q c d p+c+k q+n+d−k k=0 (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) n+p+q+c+d+1 p+c q+d = [H(2) −H(2) n c d p+q+c+d+1 n+p+q+c+d+1 +(H −H +H )(H −H +H )] n+p+q+c+d+1 p+q+c+d+1 p+c n+p+q+c+d+1 p+q+c+d+1 q+d (2.23) Differentiating (1.10) to a, the following identity for a≥b−m results: b−m(cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) (cid:88) a b k m+k H k m+k c d a−k k=0 (2.24) (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) a+b−c−d a b = (H −H +H ) m+a−d c d m+a−d a+b−c−d a−c 7 Differentiating to b, the following identity for b≥a+m results: a (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) (cid:88) a b k m+k H k m+k c d b−m−k k=0 (2.25) (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) a+b−c−d a b = (H −H +H ) m+a−d c d b−m−c a+b−c−d b−d Differentiating to c, the following identity for d≥m results: min(a,b−m)(cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) (cid:88) a b m+k H k m+k d k k=0 (2.26) (cid:18) (cid:19)(cid:18) (cid:19) a+b−d b = (H −H +H ) m+a−d d a a+b−d b−m Differentiating to d, the following identity with m=d results: min(a,b−d)(cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) (cid:88) a b k d+k H k d+k c d k k=0 (2.27) (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) a+b−c−d a b = (H −H +H ) a c d a a+b−c−d b−d Differentiating to a and c, the following identity for a≥b−m and d≥m results: b−m(cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) (cid:88) a b m+k H H k m+k d k a−k k=0 (cid:18)a+b−d(cid:19)(cid:18)b(cid:19) (2.28) = [H(2)−H(2) m+a−d d a a+b−d +(H −H +H )(H −H +H )] a a+b−d m+a−d a a+b−d b−m Differentiating to a and d, the following identity for a≥b−d and m=d results: b−d(cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) (cid:88) a b k d+k H H k d+k c d k a−k k=0 (cid:18)a+b−c−d(cid:19)(cid:18)a(cid:19)(cid:18)b(cid:19) (2.29) = [H(2)−H(2) a c d a a+b−c−d +(H −H +H )(H −H +H )] a a+b−c−d a−c a a+b−c−d b−d Differentiating to b and c, the following identity for b≥a+m and d≥m results: a (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) (cid:88) a b m+k H H k m+k d k b−m−k k=0 (cid:18)a+b−d(cid:19)(cid:18)b(cid:19) (2.30) = [H(2) −H(2) m+a−d d b−m a+b−d +(H −H +H )(H −H +H )] b−m a+b−d b−d b−m a+b−d a 8 Differentiating to b and d, the following identity for b≥a+d and m=d results: a (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) (cid:88) a b k d+k H H k d+k c d k b−d−k k=0 (cid:18)a+b−c−d(cid:19)(cid:18)a(cid:19)(cid:18)b(cid:19) (2.31) = [H(2) −H(2) a c d b−d a+b−c−d +(H −H +H )(H −H +H )] b−d a+b−c−d b−d−c b−d a+b−c−d a 3 A Recursion Formula for a Combinatorial Sum Using a recursion formula, a rational function P (n) is found such that: m (cid:88)n (cid:18)n(cid:19)2 (cid:18)2n(cid:19) km = P (n) (3.1) k n m k=0 From (1.5) or (1.14) with d=0 we have: (cid:88)n (cid:18)n(cid:19)2(cid:18)k(cid:19) (cid:18)2n−m(cid:19)(cid:18)n(cid:19) = (3.2) k m n m k=0 This formula is rewritten as: (cid:88)n (cid:18)n(cid:19)2m(cid:89)−1 (cid:18)2n(cid:19)m(cid:89)−1(n−j)2 (k−j)= (3.3) k n 2n−j k=0 j=0 j=0 Now the following is used: m−1 m (cid:20) (cid:21) (cid:89) (cid:88) m (k−j)= (−1)m−j kj (3.4) j j=0 j=0 where(cid:2)a(cid:3)istheStirlingnumberofthefirstkind[10]. ThenitisclearthatP (n)has b m the following recursion formula: m(cid:89)−1(n−k)2 m(cid:88)−1 (cid:20)m(cid:21) P (n)= − (−1)m−k P (n) (3.5) m 2n−k k k k=0 k=0 The following are a few examples: (cid:88)n (cid:18)n(cid:19)2 (cid:18)2n(cid:19) = (3.6) k n k=0 (cid:88)n (cid:18)n(cid:19)2 (cid:18)2n(cid:19)n k = (3.7) k n 2 k=0 9 (cid:88)n (cid:18)n(cid:19)2 (cid:18)2n(cid:19) n3 k2 = (3.8) k n 2(2n−1) k=0 (cid:88)n (cid:18)n(cid:19)2 (cid:18)2n(cid:19)n3(n+1) k3 = (3.9) k n 4(2n−1) k=0 (cid:88)n (cid:18)n(cid:19)2 (cid:18)2n(cid:19)n3(n3+n2−3n−1) k4 = (3.10) k n 4(2n−1)(2n−3) k=0 (cid:88)n (cid:18)n(cid:19)2 (cid:18)2n(cid:19)n4(n+1)(n2+2n−5) k5 = (3.11) k n 8(2n−1)(2n−3) k=0 (cid:88)n (cid:18)n(cid:19)2 (cid:18)2n(cid:19)n3(n6+3n5−13n4−15n3+30n2+8n−2) k6 = (3.12) k n 8(2n−1)(2n−3)(2n−5) k=0 (cid:88)n (cid:18)n(cid:19)2 (cid:18)2n(cid:19)n4(n+1)(n5+5n4−15n3−35n2+70n−14) k7 = (3.13) k n 16(2n−1)(2n−3)(2n−5) k=0 TheMathematica(cid:13)R [17]programusedtocomputetheexpressionsisgivenbelow: P[0]=1; P[m_]:=P[m]=Factor[Simplify[Product[(n-k)^2/(2n-k),{k,0,m-1}] -Sum[StirlingS1[m,k]P[k],{k,0,m-1}]]] References [1] G.E.Andrews,R.Askey,R.Roy,SpecialFunctions,CambridgeUniversityPress, 1999. [2] X. Chen, W. Chu, The Gauss F (1)-summation theorem and harmonic number 2 1 identities, Integral Transforms Spec. Funct. 20 (2009) 925-935. [3] W. Chu, L. De Donno, Hypergeometric series and harmonic number identities, Adv. in Appl. Math. 34 (2005) 123-137. [4] R.V.Churchill, J.W.Brown, Complex Variables and Applications, McGraw-Hill, 1984. [5] G.P. Egorychev, Integral Representation and the Computation of Combinatorial Sums, Translations of Mathematical Monographs, 59, Amer. Math. Soc., 1984. [6] H.W.Gould,SomeGeneralizationsofVandermonde’sConvolution,Amer. Math. Monthly 63 (1956) 84-91. [7] H.W. Gould, Final Analysis of Vandermonde’s Convolution, Amer. Math. Monthly 64 (1957) 409-451. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.